
COMP 303 MIPS Processor Design
Project 3: Simple Execution Loop

Due date: November 20, 23:59

Overview:
In the first three projects for COMP 303, you will design and implement a subset of
the MIPS32 architecture in Logisim, a software logic simulator. The goal of these
projects is to move you from designing small special-purpose circuits, such as
those you designed as homework exercises, to building complex, general-purpose
CPUs. We will be implementing a basic 32-bit MIPS processor. We will ignore more
advanced features such as the MIPS coprocessor instructions and
traps/exceptions. Read this document entirely, paying special attention to the
section “Deviation from the MIPS standard”.
We will be using Logisim, a free hardware design and circuit simulation tool. We
have implemented a library of components to help you, and Logisim comes with
libraries containing basic gates, memory chips, multiplexors and decoders, and
other simple components. You may use any of these basic components in your
designs, but you may not use the Logisim arithmetic library anywhere in
your design. If you wish to download additional libraries from the web to use in
your design, please check with the course staff for approval.
YOU HAVE TO USE THE ALU YOU HAVE IMPLEMENTED FOR PROJECT2.
EACH GROUP SHOULD USE THEIR OWN ALU IN ORDER TO GET POINTS
FROM THIS PROJECT. OTHERWISE THE COPY REGULATIONS WILL BE
APPLIED.

Project 3: Simple Execution Loop
Here we will implement the basic execution loop for the processor, but only
implementing two flow control instructions (unconditional jumps), and a few
arithmetic and logic instructions. Your design should consist of a program counter,
a MIPS Program ROM to store the compiled assembly code of the program, a
32x32 register file, your 32-bit ALU, and other components, along with the
instruction decode logic and control circuits needed to connect them together.
The design will be non-pipelined, so that in each clock cycle the processor fetches
and executes a complete instruction. For the arithmetic instructions, this includes:
fetching the instruction to execute from the program ROM, decoding the
instruction, selecting arguments from the register file, computing a result, storing
the result in the register file, and incrementing the program counter by 4. For
jump instructions, no value is written to the register file, and the program counter
is set to a value selected from the register file or from the immediate field of the
instruction.
Begin by connecting a register file, your ALU, and enough circuitry to implement a
few arithmetic instructions. Once this is working, you can add logic to handle the
jump instructions. For this project, your processor must implement the following
MIPS instructions: J, JR, ADDU, SUBU, AND, OR, XOR, NOR, ANDI, LUI.
There is a strange quirk of the MIPS architecture. The PC-relative branch targets
for control flow instructions do not refer to the address of the current instruction;
instead they refer to the address of the instruction immediately following the
current one. [You will see later on that this is because a high-performance
implementation of the MIPS is “pipelined,” and the pipeline structure means that
the PC has already been updated to point to the next instruction by the time the
branch target is computed. You may ignore this comment for now and do not
need to understand pipelining, as long as you accept that, by convention, the
branch target address is computed from the address of the instruction following
the current one. Also, the real MIPS has a “branch delay slot,” which you should
ignore for this project. Your processor will not have a branch delay slot]
We have provided some very simple test programs, but they do not thoroughly
test the processor. Write a test program that more fully tests all of the features
you have implemented in this project. This is a critical step, and you should spend
a fair amount of time developing a comprehensive set of test programs that
exercise all of the different parts of your processor.
Components you will need: The cs316 library contains a triple-ported (dual read /
single write) 32-bit wide by 32-registers deep register file, and a Program memory
chip capable of loading a MIPS assembly language file directly into its memory.
Logisim's memory library contains registers you can use for your program
counter.
Hint: The instruction decode logic in this project should be extremely simple – do
not waste time implementing an efficient decoder, because you will have to build
a new decoder in project 3 anyway.

What to submit:
Submit a single Logisim project file containing your processor, and a text file
containing the problems in your implementations. For instance, a sample text file
would be: “In my implementation, xor and ori do not work but others have no
problem”.
Help and Hints:
Ask the TAs for help. We expect to see most students in office hours during the
course of the project.
Do a pencil and paper design for all components before implementing in Logisim.
Deviation from the MIPS Standard:
You can ignore any MIPS instruction or feature not mentioned in this document,
and can assume that your processor will never encounter anything but legal
instructions from the list above. In addition:

- Assume all jumps will be word aligned and to valid ROM addresses.
- Assume traps or exceptions will not occur (i.e., do not implement them).
- Branch and jumps take effect immediately, rather than after a one-
 instruction delay slot (although we still compute the destination PC exactly
 as specified in the MIPS standard).

Loading the cs316 library: Select project→Load library→Jar Library. Select
cs316.jar, and enter edu.cornell.cs316.Components as the class name. This library
contains the following circuits:

Register File: A 32-bit wide by 32-registers deep register file. Register $0
is hard-wired to zero at all times, and writes to $0 are ignored. Inputs rA and rB
are used to select register values to output on the A and B outputs. On the rising
edge of the clock, if WEis high the data value at input D is stored in register rW.

Program ROM: A 32-bit wide byte-addressed ROM, with built-in MIPS
assembler. Use the attributes panel to load a MIPS assembly file into the ROM.
The PC input specifies the address of the current instruction, and must be a
multiple of 4. The output is the 32-bit instruction at the PC address, or zero if the
PC has gone past the end of the ROM. Note that zero also happens to encode a
no-op in MIPS. The assembly language is in the format described below.

MIPS (subset) assembly syntax:
The Program ROM component understands all of the instructions you will
implement. The syntax is standard MIPS syntax. Labels are case sensitive,
everything else ignores case. Anything following a '#' is a comment. In this
project, you will only use a few of the instructions listed below.
Labels are used to mark places in the code. Jumps and branches can refer to
these labels (for jumps, the address is inserted directly, for branches, a relative
offset from the branch instruction is computed and inserted, accounting for the
delay slot).
The instruction syntax is the same as given in the MIPS standard (and different
from the output of gcc and many other tools). Registers are written as $0, $1, ...,
$31, and the destination register goes on the left, followed by source registers
and immediate values on the right. Absolute addresses (for J) are given in hex
(i.e., 0x12ab), and all other integers can be in hex or signed decimal (i.e., 0x12ab
or 1234 or -1234). The special constant PC can be used anywhere an integer is
needed, and the assembler will replace it by the address of the instruction itself.
The PC will normally fit in 15 bits or less

Some examples of instructions are:

Jumps J 0x24
J my_label
JR $31

Branches BEQ $5, $6, -12
BEQ $5, $6, my_loop_top
BLEZ $9, 16
BLEZ $9, my_loop_done

Memory Load/Store LW $12, -4($30)
SW $12, 0($30)

Immediate load LUI $14, 0x123

Immediate arithmetic ADDIU $12, $0, 0x1234

Register arithmetic ADDU $13, $0, $20

Shifts SLL $13, $13, 2
SLLV $15, $14, $3

Labels my_loop_top: BNE $5, $6, 16
my_loop_done:

MIPS (subset) opcode summary (from the MIPS handbook):

Is optimal always best? It is not enough to simply build a working circuit. We
want you to build a good working circuit. But we leave it up to you to define what

good is, and we expect you to document your criteria and how you fulfill them. For
example, you might aim to make the fastest processor possible, at the expense of
simplicity and number of gates. Or you might aim for a minimalist design using
the fewest gates possible, even if it makes your processor slower. Eventually, in
Project 3, you will be asked to document your goals and justify the choices you
made. All of your designs should be clear and easy to follow, and should be
annotated (with text labels) for any unusual or difficult parts of the circuit.
Academic Integrity. As one of the most widely studied architectures, MIPS has a
wealth of information available on the web and in textbooks. You may consult any
of the MIPS architecture documentation available to you in order to learn about
the instruction set, what each instruction does, etc. But we expect your design to
be entirely your own. If you are unsure if it is okay to borrow from some other
source, just ask the TAs, and give credit in your final writeup. If you are unsure
about asking the TAs, then it is probably not okay. Plagiarism in any form will not
be tolerated.

	COMP 303 MIPS Processor Design
Project 3: Simple Execution Loop

