
COMP 303 MIPS Processor Design
Project 4: MIPS Processor

Due Date: 11 December 2009 23:59

Overview:
In the first projects for COMP 303, you will design and implement a subset of the
MIPS32 architecture in Logisim, a software logic simulator. The goal of these
projects is to move you from designing small special-purpose circuits, such as
those you designed as homework exercises, to building complex, general-purpose
CPUs. We will be implementing a basic 32-bit MIPS processor. We will ignore more
advanced features such as the MIPS coprocessor instructions and
traps/exceptions. Read this document entirely, paying special attention to the
section “Deviation from the MIPS standard”.
We will be using Logisim, a free hardware design and circuit simulation tool. We
have implemented a library of components to help you, and Logisim comes with
libraries containing basic gates, memory chips, multiplexors and decoders, and
other simple components. You may use any of these basic components in your
designs, but you may not use the Logisim arithmetic library anywhere in
your design. If you wish to download additional libraries from the web to use in
your design, please check with the course staff for approval.

Project 4: MIPS Processor
In this project you will complete the design of your MIPS processor by adding most
of the remaining MIPS instructions. Your basic execution loop from the previous
project should contain most of the major components, with the exception of RAM
for the load/store instructions. For this project, we will use a split-memory design:
The Program ROM will store a read-only copy of the instructions, and a separate
Logisim RAM will be used to store data for the program’s execution.
Begin by making a pencil-and-paper design showing all of the components you
will need, and create a list of all control signals in the processor. You will not
submit this paper design, but the TAs will demand to see it if you ever have a
question about anything. Next, decide for each instruction what the value of each
control signal must be, and use this information to design the instruction decode
logic. Lastly, implement your decoder and the rest of the processor in Logisim,
and test your circuit with test programs of your own making.
Your design must implementation the following subset of the MIPS architecture:

Jumps (without a delay slot) J, JR

Branches (without a delay slot) BEQ, BNE, BLEZ, BGTZ

Memory Load/Store LW, SW

Immediate load LUI

Immediate arithmetic ADDIU, ANDI, ORI, XORI

Register arithmetic ADDU, SUBU, AND, OR, XOR, NOR

Shifts (constant and variable) SLL, SRL, SRA

Finally, you must document your design in a short, 1 – 3 page paper. Include:
• A short overview of your processor design, highlighting the design choices

you made and why, and any notable features of your processor might have.
• List of sources for any parts of your design that are not entirely yours, with

the exception of built-in Logisim and cs316 library components (if any)
• List of known bugs or missing features (if any)
• An estimate of the number of gates used in your processor, with a

breakdown of the number of gates for each major component (you can
ignore the memory, program ROM, and register file).

• A description of the longest path in your design (assume that the register
file takes about 4 gate delays to perform a read, and that the MIPS program
ROM and memory each take about 10 gate delays to do a read or write).

What to submit: A single Logisim project file containing your processor, a test
program with comments describing the expected output, a text file containing
your pencil-and-paper decode logic design (table giving the value of each control
signal for every instruction, and formulas, diagrams, or descriptions of the logic
for each), and a 1-3 page design document as described above.

For the Adventurous:
Note: These suggestions for an extra challenge will be examined (and commented
on, if your project works well) but not graded. They will have no impact on the
class grades. They are here to provide some direction to those who finish their
assignments early and are looking for a way to impress friends and family.

- Implement the jump-and-link instructions JAL, JALR (barely challenging).
- Implement the delay slot for branches/jumps (moderately challenging).
- Implement multiply (MULT and/or MULTU) (moderately challenging).

Note: increasing the number of delay slots after MULT
makes this almost easy.

- Implement pipelining (more challenging).

Help and Hints:
Ask the TAs for help. We expect to see most students in office hours during the
course of the project. Extra hours will be scheduled as needed.
Do a pencil and paper design for all components before implementing in Logisim.
Deviation from the MIPS Standard:
You can ignore any MIPS instruction or feature not mentioned in this document,
and can assume that your processor will never encounter anything but legal
instructions from the table above. In addition:

- Assume loads and stores will be word aligned and to valid RAM addresses.
- Assume all jumps will be word aligned and to valid ROM addresses.
- Assume traps or exceptions will not occur (i.e., do not implement them).
- Do not implement floating point, multiply/divide, or the HI and LO

registers.
- Use a split-memory design (separate program and data memories).
- Branch and jumps take effect immediately, rather than after a one-
 instruction delay slot (although we still compute the destination PC exactly
 as specified in the MIPS standard).

Logisim and Library Guide:

Loading the cs316 library: Select project→Load library→Jar Library. Select
cs316.jar, and enter edu.cornell.cs316.Components as the class name.

Loading the Memory library: Select project→Load library→Built-in. Select Memory.
This library contains Logisim’s built-in memory RAM chip, which is fully described
in Logisim’s help files. Below is a short description:

Logisim RAM: Configurable to 32-bit wide word-addressed RAM, with up to
12-bits of address (16KB storage). The Logisim help describes this chip. Since it is
word-addressed, be sure to drop the lowest 2 bits of the address, in addition to
any extra high order bits, and use a tri-state buffer for driving the bidirectional D
pin. The following shows a typical circuit:

MIPS (subset) assembly syntax:
The Program ROM component understands all of the instructions you will
implement. The syntax is standard MIPS syntax. Labels are case sensitive,
everything else ignores case. Anything following a '#' is a comment.
Labels are used to mark places in the code. Jumps and branches can refer to
these labels (for jumps, the address is inserted directly, for branches, a relative
offset from the branch instruction is computed and inserted, accounting for the
delay slot).
The instruction syntax is the same as given in the MIPS standard (and different
from the output of gcc and many other tools). Registers are written as $0, $1, ...,
$31, and the destination register goes on the left, followed by source registers
and immediate values on the right. Absolute addresses (for J) are given in hex
(i.e., 0x12ab), and all other integers can be in hex or signed decimal (i.e., 0x12ab
or 1234 or -1234). The special constant PC can be used anywhere an integer is
needed, and the assembler will replace it by the address of the instruction itself.
The PC will normally fit in 15 bits or less

Some examples of instructions are:

Jumps J 0x24
J my_label
JR $31

Branches BEQ $5, $6, -12
BEQ $5, $6, my_loop_top
BLEZ $9, 16
BLEZ $9, my_loop_done

Memory Load/Store LW $12, -4($30)
SW $12, 0($30)

Immediate load LUI $14, 0x123

Immediate arithmetic ADDIU $12, $0, PC

Register arithmetic ADDU $13, $0, $20

Shifts SLL $13, $13, 2

Labels my_loop_top: BNE $5, $6, 16
my_loop_done:

MIPS (subset) opcode summary (from the MIPS handbook):

Academic Integrity. As one of the most widely studied architectures, MIPS has a
wealth of information available on the web and in textbooks. You may consult any
of the MIPS architecture documentation available to you in order to learn about
the instruction set, what each instruction does, etc. But we expect your design to
be entirely your own. If you are unsure if it is okay to borrow from some other
source, just ask the TAs, and give credit in your final writeup. If you are unsure
about asking the TAs, then it is probably not okay. Plagiarism in any form will not
be tolerated.

	COMP 303 MIPS Processor Design
Project 4: MIPS Processor
Due Date: 11 December 2009 23:59

