PHYS 101: General Physics 1 KOÇ UNIVERSITY

College of Sciences

Section 1

Quiz 4
22 October 2015

Closed book. No calculators are to be used for this quiz.
Quiz duration: $\mathbf{1 5}$ minutes

Name:

Student ID:

Signature:
The masses shown in the figure are attached to each other with a massless, unstretchable cord, passing over massless and frictionless pulleys. Draw the free body diagrams for the three masses and find the acceleration of mass m standing on the slope with inclination angle of 30°. Take $\mathrm{m}=5 \mathrm{~kg}, \mathrm{M}=2 \mathrm{~kg}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

PHYS 101: General Physics 1 KOÇ UNIVERSITY College of Sciences

Section 2

Fall Semester 2015
22 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:
Student ID:
Signature:

A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure . The radius of curvature of the road is R and the banking angle is θ.

What is the maximum speed the car can have before sliding up the banking (express your answer in terms of R, g, θ and μ). Draw the free body diagram for the car and write the equations of motion in each direction using the coordinate axes given in the figure.

$N_{x}=N \sin \theta$
$N_{y}=N \cos \theta$
$f_{x}=f_{s} \cos \theta \Rightarrow f_{x}=\mu_{s} N \cos \theta$
$f_{y}=f_{s} \sin \theta \Rightarrow f_{y}=\mu_{s} N \sin \theta$
We know that $\sum_{i} F_{i x}=m \frac{v^{2}}{R} \quad \sum_{i} F_{i y}=0$

$$
\begin{aligned}
& N_{y}-w-f_{y}=0 \\
& N_{y}=m g+\mu_{s} N \sin \theta \\
& N_{1} \cos \theta=m g+\mu_{s} N \sin \theta \\
& N=\frac{m g}{\cos \theta-\mu_{s} \sin \theta}
\end{aligned}
$$

$$
N \sin \theta+\mu_{s} N \cos \theta=m \frac{v^{2}}{R}
$$

$$
N\left(\sin \theta+\mu_{s} N \cos \theta\right)=m \frac{v^{2}}{R}
$$

$$
\frac{m g}{\cos \theta-\mu_{s} \sin \theta}\left(\sin \theta+\mu_{s} \cos \theta\right)=\mu \frac{\nu^{2}}{R}
$$

$$
v \leq \sqrt{\frac{g R\left(\sin \theta+\mu_{s} \cos \theta\right)}{\cos \theta-\mu_{s} \sin \theta}}
$$

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:
Student ID:
Signature:
A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure .The radius of curvature of the road is R and the banking angle is θ.

What is the minimum speed the car can have before sliding down the banking (express your answer in terms of R, g, θ and μ). Draw the free body diagram for the car and write the equations of motion in each direction using the coordinate axes given in the figure.

$$
\begin{aligned}
& N_{x}=N_{\sin \theta} \\
& N_{y}=N_{\cos } \theta \\
& f_{x}=f_{s} \cos \theta \Rightarrow f_{x}=\mu_{s} N \cos \theta \\
& f_{y}=f_{s} \sin \theta \Rightarrow f_{y}=\mu_{s} N_{\sin } \theta
\end{aligned}
$$

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:
Student ID:
Signature:
In the figure blocks A, B and C have weights of $20 \mathrm{~N}, 10 \mathrm{~N}$ and 30 N , respectively. The coefficient of static friction between blocks A and B is μ_{s} and the coefficient of kinetic friction between block A and the horizontal surface is μ_{k}. There is no friction between block C and the inclined plane. The system of blocks are released from rest. We observe that blocks A and B move together
($g=10 \mathrm{~m} / \mathrm{s}^{2} ; \sin 37^{\circ}=0.6, \cos 37^{\circ}=0.8$)
a) Draw free-body diagram for each block just after the release.
b) In terms of g and μ_{s}, what is a, the maximum acceleration that block B can have without sliding over block A?
c) If $\mu_{k}=0.4$, what is the minimum μ_{s} between A and B so that B does not slip and they (A and B) move together?

b)
c) $m_{c} g \sin 37^{\circ}-f_{k}=\left(m_{A}+m_{B}+m_{c}\right)_{a}$

$$
m_{c} g \sin 37^{\circ}-\mu_{k}\left(m_{A}+m_{B}\right) g=\left(m_{A}+m_{B}+m_{C}\right) a
$$

$$
(30 \mathrm{~N}) \cdot(0.6)-(0.4)(30 \mathrm{~N})=(6 \mathrm{~kg})(a) \Rightarrow a=1 \mathrm{~ms}^{-2}
$$

$$
f_{s}=\mu_{s} N=m_{B} a \Rightarrow \mu_{s}=\frac{m_{s} a}{N} \Rightarrow \mu_{s}=0.1
$$

PHYS 101: General Physics 1 KOÇ UNIVERSITY

Section 5

Fall Semester 2015
22 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:
Student ID:
Signature:
Blocks A, B and C are connected by massless strings and pulleys are also massless and frictionless. (See the figure). Both blocks A and B have the same mass, $M_{A}=M_{B}=2.5 \mathrm{~kg}$. The coefficient of kinetic friction between each block and surface is $\mu_{k}=0.20$. Block C moves downward with constant speed.
a) Draw three separate free-body diagrams showing all the forces acting on the blocks
A, B and C .
b) Calculate the tension in the string connecting blocks A and B .
c) Calculate mass M_{C} of block C.

b) Since block C moves with constant speed, acceleration of all masses are zero.

Therefore, $\mathrm{T}_{\mathrm{AB}}=\mathrm{f}_{\mathrm{kA}}, \mathrm{f}_{\mathrm{kA}}=\mu_{\mathrm{k}} \mathrm{m}_{\mathrm{A}} \mathrm{g}=5 \mathrm{~N}$.
c) Since acceleration is zero, total force acting on the system is zero.
$f_{k A}+f_{k B}+w_{/ B}=w_{C}$, where $W_{/ B}$ is the component of the weight of B parallel to the inclined plane.
$\mathrm{f}_{\mathrm{kB}}=\mu_{\mathrm{k}} \mathrm{m}_{\mathrm{A}} g \cos \theta=4 \mathrm{~N}$
$\mathrm{w}_{/ / \mathrm{B}}=\mathrm{m}_{\mathrm{B}} \sin \theta=15 \mathrm{~N} \longrightarrow \mathrm{w}_{\mathrm{C}}=24 \mathrm{~N} \longrightarrow \mathrm{~m}_{\mathrm{C}}=2.4 \mathrm{~kg}$

