PHYS 101: General Physics 1 KOÇ UNIVERSITY Fall Semester 2015 College of Sciences

Section 1Quiz 422 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:

Student ID:

Signature:

The masses shown in the figure are attached to each other with a massless, unstretchable cord, passing over massless and frictionless pulleys. Draw the free body diagrams for the three masses and find the acceleration of mass m standing on the slope with inclination angle of 30° . Take m = 5 kg, M = 2 kg and g = 10 m/s^2 .

PHYS 101: General Physics 1

Section 2

KOÇ UNIVERSITY College of Sciences Quiz 4

Fall Semester 2015

22 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name:	Student ID:	Signature:

A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure . The radius of curvature of the road is R and the banking angle is θ .

What is the maximum speed the car can have before sliding up the banking (express your answer in terms of *R*, *g*, θ and μ). Draw the free body diagram for the car and write the equations of motion in each direction using the <u>coordinate axes given in the figure.</u>

PHYS 101: General Physics 1

Section 3

KOÇ UNIVERSITY College of Sciences Quiz 4 Fall Semester 2015

22 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Name: Student ID: Signature:

A car rounds a banked curve (where the coefficient of static friction is μ) as shown in the figure .The radius of curvature of the road is R and the banking angle is θ .

What is the minimum speed the car can have before sliding down the banking (express your answer in terms of R, g, θ and μ). Draw the free body diagram for the car and write the equations of motion in each direction using the <u>coordinate axes</u> given in the figure.

PHYS 101: General Physics 1

Section 4

KOÇ UNIVERSITY College of Sciences Quiz 4

Fall Semester 2015

22 October 2015

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

In the figure blocks A, B and C have weights of 20N, 10N and 30N, respectively. The coefficient of static friction between blocks A and B is μ_s and the coefficient of

kinetic friction between block A and the horizontal surface is μ_k . There is no friction between block C and the inclined plane. The system of blocks are released from rest. We observe that blocks A and B move together

 $(g = 10m/s^2; \sin 37^o = 0.6, \cos 37^o = 0.8)$

a) Draw free-body diagram for each block just after the release.

b) In terms of g and μ_s , what is *a*, the maximum acceleration that block B can have without sliding over block A?

c) If $\mu_k = 0.4$, what is the minimum μ_s between A and B so that B does not slip and they (A and B) move together?

PHYS 101: General Physics 1 KOÇ UNIVERSITY College of Sciences

Fall Semester 2015

22 October 2015

Section 5

Closed book. No calculators are to be used for this quiz. Quiz duration: 15 minutes

Blocks A, B and C are connected by massless strings and pulleys are also massless and frictionless. (See the figure). Both blocks A and B have the same mass, $M_A = M_B = 2.5kg$. The coefficient of kinetic friction between each block and surface is $\mu_k = 0.20$. Block C moves downward with constant speed.

Quiz 4

a) Draw three separate free-body diagrams showing all the forces acting on the blocks A, B and C.

b) Calculate the tension in the string connecting blocks A and B.

c) Calculate mass M_C of block C.

b) Since block C moves with constant speed, acceleration of all masses are zero. Therefore, $T_{AB}=f_{kA}$, $f_{kA}=\mu_k m_A g=5N$.

c) Since acceleration is zero, total force acting on the system is zero.

 $f_{kA}+f_{kB}+w_{lB}=w_C$, where $w_{l/B}$ is the component of the weight of B parallel to the inclined plane.

 $\begin{array}{l} f_{kB}=\mu_k m_A g cos \theta=4N \\ w_{//B}=m_B g sin \theta=15N \quad \hline \qquad w_C=24N \quad \hline \qquad m_C=2.4kg \end{array}$