
ARTICLE IN PRESS
Journal of Network and

Computer Applications 30 (2007) 499–514
1084-8045/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jnca
Embedded web server-based home
appliance networks

M. Can Filibeli, Oznur Ozkasap�, M. Reha Civanlar

Department of Computer Engineering, Koc University, Rumeli Feneri Yolu, Sariyer 34450, Istanbul, Turkey

Received 18 July 2005; received in revised form 29 March 2006; accepted 13 April 2006
Abstract

Powerful microcontrollers are used as parts of most home and office appliances of today.

Integrating web servers to these intelligent devices will aid in controlling them over the Internet and

also in creating effective user interfaces in the form of web pages. Assigning multiple functionalities

to a single button on an appliance help manufacturers economize user interfaces, but, this can easily

create confusion for the users. Since the cost of web-based interfaces is considerably low, they can be

used to provide the infrastructure for the design of simple and more user-friendly interfaces for

household appliances. Also, a web page based interface is much easier to change, when needed, as

compared to a hardware interface. This paper presents a novel approach to control devices with

embedded web servers over the Internet and to form device networks such that their components can

make use of one another’s services and functions while improving the user interfaces. The main

benefits of this approach include its lightweight design, automatic configuration, and, utilization of

widely available and tested network protocols of TCP/IP and HTTP. The validity of the approach

has been verified through a prototype system working with real appliances.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Embedded web servers; Home network systems; Ethernut; Home appliance networks; Device discovery
1. Introduction

Many home and office appliances such as televisions, VCRs, telephones, watches, ovens,
toasters, dish-washers and thermostats produced over the last decade are equipped with
see front matter r 2006 Elsevier Ltd. All rights reserved.

.jnca.2006.04.001

nding author. Tel.: +90212 338 1584; fax: +90212 338 1548.

dress: oozkasap@ku.edu.tr (O. Ozkasap).

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2006.04.001
mailto:oozkasap@ku.edu.tr

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514500
complex features. This has become possible by the computer industry’s ability to fit more
transistors into a smaller area of silicon which increases the computational capabilities of
devices while decreasing the cost and the power consumption. Nowadays, most of the
home and office devices contain embedded microcontrollers. One of the most important
reasons for embedding computers to everyday appliances is that they make the appliance
easy to use while giving them new features that enhance their values (Borriello and Want,
2000). As of today, these embedded computers cost a few dollars and are as capable as
desktop computers of 1980s. Such devices can support an embedded operating system with
a TCP/IP stack, interface to a 10/100Mbps network and can be used as web servers.
The Internet has been mostly used to connect personal computers so far, but shortly all

kinds of appliances with embedded computers will exchange information over the Internet.
A massive number of microcontrollers are available in today’s devices which can be linked
to the Internet. If these intelligent appliances could be connected to the Internet at low
cost, the way we control and manage their functions would change entirely.
As the abilities of appliances increase, the complexity of controlling these devices

increases as well. The need for informative user interfaces is suppressed by the higher cost
of implementation. Therefore, complex appliances come with poorly labeled buttons and
overloaded functions. For instance, to set the timer of a stereo, a user should press a
combination of buttons within a few seconds. To ease the interaction with complex
appliances, the scenario that every device has a keyboard and a display is not an option
considering an environment with thousands of embedded systems. We clearly should come
up with a compact solution. Web pages can be used as user interfaces where each appliance
has the ability to serve its user interface as a web page over the Internet. These pages can
contain not only text but also pictures, hypertexts, photographs, video and audio as in
usual web pages. By the advent of the user interfaces based on web pages, all devices
requiring user interaction can be controlled and managed from one device which includes a
web browser, such as a personal digital assistant, cell phone, etc. Also, use of web page
based, button and display free designs reduce the cost of production while making the
systems more user-friendly.
Remote control via the Internet is not a new feature and used in home automation

systems. However, providing a mechanism for interaction between devices in this
environment is quite challenging. For example, an alarm clock can interact with the
heating system according to the alarm time and can send instructions to the heating system
to start warming the house before the residents wake up. There exist some commercial
platforms, which facilitate the development of applications interacting with and exploiting
the abilities of networked intelligent devices, such as Universal Plug and Play (UPnP)
(UPnP Forum; Jini Community; Pascoe, 1999) etc. Our system is not similar to these
platforms. However, all solutions including ours aim at the same features, namely
supporting remote control of devices via the Internet and providing a mechanism for
interaction between devices. We believe that an attractive alternative to the existing
techniques is a web servers based system, where each appliance runs an embedded web
server serving the pages needed for its own user interface. This approach is considerably
simpler than the existing systems while keeping most of their functionalities as will be
explained in this paper.
We designed an application architecture, and, built and demonstrated a prototype

system that can integrate web servers to everyday appliances with embedded
microcontrollers to control and manage them via web pages using regular web browsers

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 501
over the Internet. The system allows forming device networks such that their components
can easily make use of each others’ services and functions. The unique architecture
presented in this paper is used to develop the prototype system which, in turn, used to test
and demonstrate the characteristics of our design. The main contributions of this
architecture are its lightweight design, automatic configuration and utilization of widely
available network protocols of TCP/IP and HTTP.

The remainder of this paper is organized as follows: Section 2 discusses everyday
appliances with web servers. It details out the Ethernut platform and Ethernut Web Server,
the basic components that we used in building our platform. Section 3 presents the device
coordination in home and office networks. Platforms such as UPnP, Jini, and Salutation
are introduced and compared. In Section 4, Ethernut based architecture and our prototype
system design is introduced and compared with other available platforms. Section 5
discusses the benefits and drawbacks of the Home Appliance Network architecture.
Finally, Section 6 presents our conclusions.

2. Everyday appliances with web servers

Recent technological developments enable us to embed web servers into everyday
appliances with low costs. What do we hope to gain by putting our devices online? Basically,
the web enables users to fetch web pages and display them on their own browsers in a
platform-independent manner. Moreover, information coming from an appliance’s sensors
can be used to generate dynamic HTML documents by common gateway interface (CGI)
scripts. Therefore, any device connected this way can be monitored and controlled through
CGI scripts and the results can be sent to the user’s browser as a web page. Not only users,
but also manufacturers can use web access to update their products’ software simply by
uploading the new software to devices remotely or appliances can be programmed to
regularly check the manufacturer’s web site for software updates and download them
automatically when they are available. Furthermore, when an appliance requires
maintenance, it can automatically inform the technical staff without interrupting the user.

Web-based interfaces are cross-platform and easier to develop. The costs related to
product documentation, training and support are lower. These can be instrumental in
solving user interface related problems. Most complex appliances have many unused
functions, because users find them too difficult to use. There are several reasons for poor
interfaces. An important one of these is that since manufacturers economize on buttons
and displays, complex features can be used only by button combinations with no or very
hard to understand indications on the button labels. Moreover, the feedback given to the
user after a performed action is usually not satisfactory (Nichols and Myers, 2003). On the
other hand, as manifested by the exponential growth of the number of web users globally,
ordinary people can use web based interfaces effortlessly without any knowledge of the
underlying hardware and software.

There are many industrial and academic groups that are working on generating
interfaces for complex appliances (Jini Community; HAVi; Nichols et al., 2002). Human
Computer Interaction Institute of Carnegie Mellon University investigates how handheld
devices can be used to improve the interfaces for everyday appliances, using an approach
called personal universal controller (PUC). PUC exchanges information with the
appliance. First, it downloads the description of the appliance’s functions, then it creates
a control panel using transferred description and finally it sends control signals to the

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514502
appliance as the user operates the panel. The control panel contains figures, informative
texts and extra features that ease the usage of the appliance. The research is focused on
automatic generation of control panels. Two studies have been conducted in order to
create high quality and user friendly control panels. The first study is a between-subjects
comparison of a handheld interface with the interface to an actual device (Ponnekanti et
al., 2001). Paper prototypes (Rettig, 1994) were used in the first study as the handheld
interface. In the second study, actual implementations of handheld interfaces were used
instead of paper prototypes. Both studies showed that users were able to complete complex
tasks in about one half of the time and with half as many errors as the actual device
interfaces (Nichols et al., 2002). The results of experiments support the need for more
informative user interfaces. In the sense of simplifying the user interface of the appliance,
the handheld interface mentioned above and the web-based interface presented in this
paper both address the same requirements. Therefore, users can control complex
appliances easily with well designed, feature rich web-based interfaces which contain
self-informative buttons, hyperlinks, texts, figures, etc.
At this point, we should indicate that providing user interfaces as web pages by no

means guarantee having well designed user interfaces. However, they facilitate easy design
and maintenance of well designed user interfaces based on web pages and associated design
tools. This paper focuses on the infrastructures for using web pages as user interfaces. Web
page design for better user interfaces is outside our scope.
The benefits of embedding a web server into an appliance can be summarized as follows:
�
 Users can interact with appliances using a device which contains a web browser. Such
devices, ranging from PCs to cell phones, are universally available and using them is
common knowledge.

�
 User-interface hardware (electromechanical) costs can be eliminated and more user-

friendly interfaces can be designed with low costs.

�
 Controlling, monitoring and updating can be done from anywhere in the world.

�
 Products can be supported throughout their life cycles by manufacturers by uploading

new software versions remotely, reducing the maintenance costs.

�
 User interfaces can be updated or extended. For example, accessibility options for

helping handicapped users can be added. User interface can be featured in different
languages, etc.
2.1. Ethernut—open source project for building ethernet devices

An embedded web server should use the HTTP protocol to transmit Web pages from the
embedded system to the web browser and to transmit form data back to the embedded
system attached to the appliance. The embedded system requires a network interface, such
as Ethernet, a TCP/IP protocol stack, embedded web server software and static and
dynamic web pages that form the user interface for that specific device. Because the
embedded systems have limited CPU and memory resources and these resources are mostly
used by real-time applications, end-users may have to wait up to few seconds for an HTTP
response. Multi-threading should be employed in the embedded systems to avoid slow
response. Moreover, web server software must be able to respond to multiple HTTP
requests simultaneously and must use non-blocking multithreading such that one HTTP
transaction waiting for data will not prevent another HTTP transaction.

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 503
When implementing the TCP/IP stack for microcontrollers, some features can be
omitted depending on the specific application requirements. In order to serve wide range of
application requirements while keeping the size compact, an embedded system should
implement five basic protocols of the TCP/IP protocol suite: TCP, UDP, IP, ICMP and
ARP. Moreover, application level protocols DHCP, DNS and HTTP should also be
implemented.

Users can interact with appliances by submitting a form to an embedded web server. The
form data is processed by a CGI script and the results are returned back to the user as an
HTML page. Appliances can be monitored and controlled by forms.

Hardware of a web-enabled embedded system must have a powerful and low-cost
microcontroller, compact size, flash/EEPROM for accommodating the TCP/IP stack and
an Ethernet controller.

Taking all these software and hardware parameters into consideration, we chose the
Ethernut system, which is an open source hardware and software project for building
embedded Ethernet devices, as the core component of our web accessible home appliance
network system.

The Ethernut system includes a small board (80mm� 100mm), which is equipped with
Atmel Atmega 128CPU running at 14.7456MHz with 4KB internal SRAM, full duplex
IEEE 802.2 compliant Realtek 10Mbps TRL8019AS (Ethernut 1) or 100Mbps
LAN91C111 (Ethernut 2) Ethernet controller, 2 RS-232 serial ports, on board RJ-45
and DB9 connector, 22 programmable digital I/O, 8 channel, 10 bit analog/digital
converter, 2� 8 bit and 2� 16 bit timers/counters. The Ethernut 1 and Ethernut 2 boards
are equipped with 32 and 480KB external SRAM, respectively.

The software part of the project consists of a real time operating system (Nut/OS), which
supports dynamic memory management, event queues, stream I/O functions, simple Flash
ROM file system, and a TCP/IP protocol suite (Nut/Net) which includes ARP, IP, ICMP,
TCP DCHP, HTTP API with file system access and CGI functions. The source code is
well-documented and implemented mostly in C. Wide range of applications were
developed using the Ethernut (Ethernut Hardware Manual) such as networked sensors,
remote monitoring equipment, alarm service providing, remote diagnose and service,
industrial Ethernet applications home/building control.

Web servers running on normal computers with mass storage devices use the file system
to retrieve the requested web document. To offer similar functionality, Ethernut contains a
very simple file system which is based on data structures stored in the flash memory. The
available space is very limited in embedded systems to store web pages; however, web
pages require only flash ROM space and SRAM is not utilized (with typical applications at
least 64KB of web page storage is available).

One of the ways of interfacing applications with web servers is to employ CGI. If a form
is submitted by the user, the web server executes the related CGI script and the resulting
web page is dynamically formed and returned to the user. By this way, user can monitor
the appliance’s status or control it through the digital I/O ports.

3. Device coordination in home and office networks

Letting the home devices communicate, interact and share functions/services with each
other requires some sort of device coordination within the appliance network such that
devices can enter the network, announce their services and find services offered by other

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514504
devices. For enabling device coordination, a subset of the following capabilities should be
provided to a device (Rekesh, 1999):
�
 declare its existence to the appliance network,

�
 discover the appliances in the network automatically,

�
 describe its services and capabilities to other devices,

�
 query and understand the capabilities of other devices,

�
 configure itself automatically,

�
 inter-operate with other devices wherever meaningful.
Some of the best-known commercial platforms for facilitating the development of
distributed applications interacting with and exploiting the capabilities of diverse
networked appliances is Jini, UPnP, Salutation and HAVi. Next, we describe related
work including these commercial platforms as well as relevant research activities.

3.1. Commercial platforms

Jini from Sun Microsystems is based on Java technology. It is a programming model and
infrastructure that aims to enable spontaneously networked devices to communicate,
interact, and share each others’ services. The key idea of Jini is to allow any device with a
processor, memory and network connection to provide services to other entities in a
network and to use such services offered by others. Jini provides mechanisms to enable
devices to plug together to form a Federation. Components of the federation may be
physical devices or software objects written in Java. In Jini terminology, such devices and
objects are called Services which can be connected to a network and announce their
presence to a Lookup Service. Clients that wish to use these Services locate and call them
to perform tasks.
The Jini system contains three main types of players which are connected to a network.

There is a Service, such as a VCR, a printer, a digital camera, a coffee machine, etc., a
Client that would like to use this Service and a Lookup Service that acts as an agent
between services and Clients. Jini is based on Java technology, so it exploits several
advantages of Java. It turns a heterogeneous device network into a homogeneous Java
Virtual Machines network, which supports the Write-Once-Run-Anywhere capability and
operating system independence. On the other hand, a device plugged into the network has
to be assigned with an IP address and a subnet mask. Thus, administration is still needed
for the network. The most important disadvantage of the Jini System is that running Java
still costs a lot of processing power. If you want to run JVM on limited resources, such as
on an 8-bit microcontroller, the only choice has been the reduced subset of Java created
specially for the environment. Depending on processor, application, and component set, a
typical core code needs a memory space of 40 kbytes (Bettstetter and Renner, 2000).
UPnP from Microsoft is an architecture defined at a much lower level than Jini. Instead

of using virtual machines to change heterogeneous device networks to homogeneous ones,
protocols such as TCP/IP and standards like HTTP and XML which can easily be
implemented on all devices are used.
UPnP has five major components: Device Discovery, Device Description, Presentation,

Events and Subscriptions and Control. Device discovery enables devices to announce their
presence to the network as well as discover other available devices in the network. During

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 505
discovery, the information that is exchanged, provide basic information about the devices
and their services, and a description URL, which can be used to gather additional
information about the device. A device may contain a set of services corresponding to each
functional component of the device. UPnP keeps description of these services in XML files.
In the device discovery phase, minimum information about the capabilities of that
particular device is transferred with the discovery messages. In the description phase,
control point learns more about the device by retrieving the XML file from the URL
provided by the device discovery message. If a device has a URL for presentation, then the
control point can retrieve a page from this URL, load the page into a browser and
depending on the capabilities provided, a user can control the device and/or view its status.
When a control point subscribes to a service, the service sends event messages to the
control point to announce changes in device status. Control points use URLs that are
provided during the description process to access additional XML information that
describes actions to which the UPnP device services respond, with parameters for each
action. Control messages are formatted in XML and use SOAP.

A device plugged into the network can receive its IP address and subnet mask either by
dynamic host configuration protocol (DHCP) or AutoIP (Rekesh, 1999). If there is a
DHCP server in the network, device is configured automatically by DHCP. On the other
hand in AutoIP mechanism, the device randomly chooses an IP address from a reserved
range and then sends out a request with address resolution protocol (ARP) to detect
whether the IP address is used by another device. UPnP does not specify any security
mechanism for access and control of UPnP devices. Security has to be provided by
the applications or services. Security standards on lower networking layers such as SSL
may be used to gain security. The security features of this architecture have not been
developed yet.

Salutation, developed by the Salutation Consortium, is cooperation architecture to solve
the problems of service discovery and utilization among diverse appliances and equipment.
The Salutation architecture provides a standard method for devices to describe and
advertise their capabilities to possible Clients. It also enables devices to search other
applications, services and devices for a particular capability, and to request and establish
sessions with them to utilize the capability (Salutation Consortium, 1999a,; Salutation
Consortium, 1999b). ‘‘Salutation is shipping while others are still thinking!’’ claims the
Salutation Consortium in (Pascoe, 1999) while comparing its solution to Jini and UPnP.
Products equipped with Salutation are available in the market since 1997. Six member
companies (Canon, Fuji, IBM Japan, Mita, Muratec and Ricoh) demonstrated some
Salutation-enabled products in 1997. These products support a company intranet that
automatically detects new peripherals as they get attached and makes their capabilities
available for use. The new products include both hardware and software applications.
Demonstrated products are digital copiers, fax machines, scanners and printers. Many of
them integrate with Lotus Notes in a corporate intranet environment.

Salutation is nonproprietary and specifications are available for third-party develop-
ment. It is also a relatively lightweight platform, which is a significant benefit for current
mobile phones and PDAs. Salutation is not suitable for dynamic and large-scale networks.
Currently, its specification is being modified to better suit large-scale networks. Unlike
UPnP, Salutation does not address the automatic configuration because of its transport
independent design. Moreover, it would not be easy to propose a solution to this problem
that worked on all transport types. Thus, its use for home networking is not easy, since it

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514506
needs administration for configuration. Moreover, Salutation does not specify any security
mechanism for access and control of networked devices. Therefore, security mechanism
has to be provided by the applications or services.
Home Audio/Video Interoperability (HAVi) is a consortium of consumer electronics

companies organized to define standards for interoperability among network connected
digital home entertainment products. HAVi compliant devices automatically announce
their presence and capabilities to every other device on the HAVi network. Architecture is
designed to work over an IEEE 1394 network. No configuration of network addresses or
device drivers are needed in the HAVi system.
The device discovery architectures given above, approach the problem of service

discovery very well. Jini and UPnP are both flexible and scalable. Although Salutation is
not suitable for dynamic and large-scale networks, it addresses mobile devices successfully
because of its lightweight design. Moreover, it is the only platform used in commercial
products in today’s market.
Jini is based on dynamically downloadable Java code which is used to tie various devices

together, but this structure makes Jini to employ Java technology in the development. On
the other hand, UPnP is based on commonly used protocols and standards which can be
implemented easily on every device using any technology. Moreover, UPnP is the only
solution that supports automatic configuration of devices using either DHCP or AutoIP.
Salutation is well defined but confined to the service discovery protocol and session
management. It can operate in any network, including IP, IR and wireless. This transport
independence is the strongest feature of Salutation. Salutation doesn’t address features like
remote event notifications. HAVi is designed to enable interoperability only in home AV
networks and supports multimedia streaming and service reservation. HAVi architecture is
not suitable to be used with all home appliances but only with multimedia ones.
If these frameworks are analyzed by comparing the features each one provides, Jini is the

most sophisticated, providing device discovery, device lookup, leasing, service invocation,
and distributed events. UPnP targets a lower level by supporting device discovery and
network configuration. Salutation and HAVi target a middle level, enabling discovery and
service invocation.
A number of research groups are working on the design and implementation of home

network systems using middleware technologies described above (Dong-Sung Kim et al.,
2002; Nakajima, 2002). However, none of the above four has wide scale deployment.
UPnP’s self-configuration feature is an essential mechanism that should be implemented
on other platforms. Many more changes and additions seem to be needed before having a
complete and standardized device connection platform that is commercially usable.

3.2. Relevant research activities

A number of research groups are working on controlling appliances from handheld
devices. The Stanford ICrafter (Ponnekanti et al., 2001) is a framework for distributing
appliance interfaces to several controlling devices. Their structure supports the automatic
generation of interfaces. The XWeb project (Olsen Jr et al., 2000) aims to separate
functionality of the appliance from the device upon which it is displayed. XWeb defines an
XML language from which user interfaces can be created. The PUC is another framework
for improving interfaces to complex devices by introducing an intermediary interface. A
PUC engages in two-way communication with everyday appliances, first downloading a

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 507
description of the appliance’s functions, and then automatically creating an interface for
controlling the appliance.

The research activities mentioned above focus on automatic creation of user interfaces
rather than the system and infrastructure issues. These frameworks separate the appliance
from the interface. Interfaces are generated using specification languages depending on the
type of the control device.

4. Ethernut-based embedded web servers

Device networks based on Jini, UPnP and Salutation platforms need specialized servers
to be accessed over the Internet. On the other hand, we can connect our home appliance
networks together and enable access to appliances over the Internet using the Ethernut.
The architecture overview is given below and illustrated in Fig. 1.

4.1. Architecture

The Home Appliance Network (HAN) connects to the Internet through the Ethernut

Home Server (EHS). The Internet connection can be established either via an analog
modem over PSTN or via a GSM modem over GPRS using the point-to-point protocol
(PPP) (RFC 1661). Appliances within a HAN can connect to the network either by wired
(10/100baseT) or wireless (IEEE 802.11) network technologies. After connecting to the
Internet, EHS sends its IP address and Unique Home Identifier (UHI) to an Address Server.
Address Server keeps UHI, IP address couple for a certain period unless it is renewed. This
facilitates robust behavior in the case of Internet connection failures and IP address
changes, as the Address Server will not contain HANs that are no longer available.
Moreover, the Address Server prevents unauthorized access to the HANs. An Address
Server with a static IP is necessary in this architecture since in every PPP connection EHS
Fig. 1. Ethernut-based embedded web servers architecture.

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514508
may get a different IP address which must be known by the user in order to reach the
correct HAN over the Internet.
When an appliance is plugged into the network, it obtains its IP address, subnet mask

and gateway address from a DHCP server if it exists in the network. If no DHCP server is
available, appliance randomly chooses an IP address from a reserved range of IP addresses
and then sends out a request using ARP to detect whether the IP address is used by another
device. If the address is used by another device, self-configuration procedure is started over
with a new IP address chosen randomly from the specified range.
After self-configuration finishes, the appliance locates the EHS by broadcast unless it

knows the EHS’s IP address. If the EHS’s address is known by the appliance, unicast
can be used to send the information. The appliance sends its identifier, IP and MAC
address to the EHS. The identifier contains a descriptive name of the appliance,
understandable by a user, such as ‘‘The Internet Clock’’. If an EHS is not available in the
network, appliance starts serving its web pages within the network and waits for an EHS

online announcement. When an EHS becomes online in the network, it broadcasts an
online announcement, so that appliances that are already in the network register
themselves to the EHS.
Each appliance within a HAN includes a web server that keeps web pages to control and

monitor its functions and status. Services of an appliance can be executed using the
hyperlinks to CGI functions on this web server. A service request to a device within the
HAN coming via the Internet is routed to the target device by the EHS.
After the EHS gets the information from an appliance, it uses the identifier and the IP

Address to construct a hyperlink on its main web page. The address contains a link to a
CGI function on the EHS with parameters: an IP address, an MAC address, an Identifier
and a URL which points to the root of the appliance’s web server. This data embedding
into the web page is needed because one EHS is used to control several appliances and the
web servers are stateless. When a user clicks on one of the hyperlinks in the main page of
the EHS, the bridge CGI function running on the EHS opens a TCP socket to the target
appliance and receives appliance’s main web page through this socket. Fig. 2(a)
demonstrates a sample web page for an appliance.
Before sending the web page to the requester, CGI function modifies the source of the

web page such that every hyperlink, form target, and image points to the same CGI
function (bridge.cgi) on the EHS (the IP Address of the EHS assigned by the PPP
connection is 212.253.205.12) with a different URL parameter containing the original link
on the appliance’s web server. The modified web page is given in Fig. 2(b). For example,
the original hyperlink (/a href ¼ ‘‘/index.html’’SMain Page//aS) is modified by the EHS
before sending to the requester. The hyperlink is equipped with the IP address of the EHS’s
PPP connection and the IP address of the target appliance:
/a href ¼ ‘‘http://212.253.205.12/cgi-bin/bridge.cgi?ip=192.168.1.5&url=/index.html’’S

Main Page//aS
If the requester clicks one of these hyperlinks, again the CGI function opens a TCP

socket and performs actions on the target device (the IP address of the target device is
192.168.1.5) according to the URL parameters and retrieves the resulting web page. Once
more, it modifies the web page so that later requests to the appliance are directed over the
EHS. A hyperlink pointing to an appliance exists on the main web page of the EHS for a
certain time unless the information is renewed. This leasing mechanism is crucial for the
robust behavior of the system in case of appliance connection failures.

http://212.253.205.12/cgi-bin/bridge.cgi?ip=192.168.1.5&url=/index.html
http://212.253.205.12/cgi-bin/bridge.cgi?ip=192.168.1.5&url=/index.html

ARTICLE IN PRESS

Fig. 2. Bridge.cgi Function—(a) Browser view of the original clock setting page. (b) Browser view of the modified

clock setting page.

M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 509
The architecture also supports device coordination. For instance, an alarm clock may
interact with the heating system according to the alarm time and send instructions to the
heating system. An appliance sends instructions to another appliance by requesting the
CGI function of the pre-specified service (for instance: start warming the house) with
parameters.

The architecture contains two single-points of failure: the address server and the EHS. In
order to avoid these, a secondary address server and a secondary ethernut home server can
easily be integrated to the system.

4.2. The prototype implementation

We have created a prototype for demonstrating and testing our design. Fig. 3 illustrates
an overview of the prototype system. We implemented an Internet alarm clock (Fig. 4a)
and an Internet TV remote controller (Fig. 4b) to be used as web embedded appliance
samples controlled within our prototype.

The Internet alarm clock is implemented as a small board which houses an Atmel
ATMega16 microprocessor and an LCD to display the time and date. The clock is
designed without a dedicated user interface (without buttons for setting the date and time).
Instead, an Ethernut board is connected to the clock. The Ethernut board contains a web
server that serves web pages that constituting the user interface of the clock. The Internet
TV remote controller consists of another board containing an Atmel ATMega16
microcontroller and an IR LED transmitter. Unlike the conventional remote controllers,
this Internet TV remote controller has no buttons on it! Users interact with it via web
pages that are served by an Ethernut board which is connected the remote controller.

In the prototype, the alarm clock acts as a central, single-point controller for the user.
Instead of programming the heater, coffee maker, bread grill, water heater, one by one, the
user programs just the alarm clock. Moreover, the web interface makes programming
appliances very easy via the alarm clock. Considering the cost of the embedded system, we
think it worth to have an embedded system in the alarm clock.

ARTICLE IN PRESS

Fig. 3. The prototype system overview.

Fig. 4. The Hardware of the Prototype ımplementation: (a) Alarm clock with embedded web server. (b) VCR

remote controller with embedded web server. (c) The Ethernut home server.

M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514510
Two appliances are connected to an Ethernet via Ethernut boards. Automatic
configuration property of the system was tested on the two networks, one of
them housing a DHCP server. We employ an analog modem and it is connected to the
EHS via RS232 (Fig. 4c). EHS connects to the Internet using the PPP. After the
connection, EHS registers itself to the address server with its IP address. The alarm clock
and the remote controller register themselves to the EHS as soon as they are plugged into
the Ethernet.
Users can get the IP address of the EHS from the address server. When a user connects

to the EHS using a web browser, a webpage showing the hyperlinks of the online
appliances (in our prototype, the TV remote controller and the alarm clock) are displayed
as shown in Fig. 5a. Via this structure, the user can set the alarm of the clock (Fig. 5b), and
at the alarm time a selected remote controller initiates a selected command on a chosen
appliance as shown in Fig. 5c and d.
In our prototype, in addition to providing device control over the Internet, the

coordination between the appliances in the HAN is implemented as well. Users without

ARTICLE IN PRESS

Fig. 5. Device coordination: (a) The web page showing the list of online devices is dynamically generated by the

Ethernut home server. (b) The alarm clock is set via a form. (c) In device coordination online device list is get from

EHS. (d) In device coordination related service information is get from the device itself.

M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 511
any information on the system can easily utilize the system since all necessary
configurations are done automatically.

5. Benefits and drawbacks of the HAN architecture

Embedded Web Servers approach used in this study provides several interesting benefits,
which were demonstrated in the prototype system. Embedded Web Server-based HANs
provide a general purpose technique, which allows users to employ a single control device
with the Internet connection to interact with diverse appliances with embedded systems
that he or she may encounter in his or her daily life. Moreover, web enabling appliances
provides a method for interfacing to appliances without any client side programming. In
addition, it provides platform independence. We based our architecture on powerful and
universally available TCP, IP and HTTP protocols instead of designing special protocols
for communication and interaction.

Our approach is also flexible, dynamic and adaptive. For instance, manufacturers can
easily incorporate different features and functionality in their products or improve user

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514512
interfaces by designing new web pages and CGI functions. Moreover, manufacturers can
perform software updates remotely. They can extend or update appliance interfaces by
simply uploading new web pages to appliances’ web servers. Accessibility options for
helping handicapped users or multi-language features can be added to appliance interfaces.
Our approach places minimal resource requirements on appliances as they must only
implement a web server on the existing embedded systems. The approach allows device
manufacturers to implement complex functionality, such as value-added services, even for
the simplest appliances with microcontrollers.
Designing HAN compatible appliances is simple since the developers of embedded

systems can use traditional programming techniques and conventions. Moreover,
there is no need to implement low level components such as TCP/UDP sockets, CGI
function handlers, thread manager, DHCP Client or HTTP file system. The APIs are
presented completely in the prototype system. The costs related to user interface design,
product documentation, training and support can be reduced considerably with our
approach.
For consumers, configuration of HAN compatible appliances is completely transparent.

When an appliance is plugged into the network, it obtains its network configu-
ration automatically. Moreover, appliance interfaces as web pages are easier to interact
with since they can contain labels that are more descriptive and certain multi-step tasks can
be put on separate web pages where navigation between steps are accomplished by
hyperlinks.
One drawback in the HAN architecture is the communication overhead related to the

appliance registration. An appliance should register itself with the HAN Server in certain
periods of time. In the Client side, a thread, which is dedicated especially for registration,
sleeps for a certain period of time. When it wakes up, it opens a TCP socket and makes an
HTTP request to the HAN Server. Therefore, there is no need to use an additional thread
on the Server side. Appliance registration process makes use of existing HTTP threads in
the HAN Server. Since appliance registration takes place in the local network and amount
of information exchanged during registration process is about 1 KB, communication
overhead becomes a less serious problem.
The current version of the HAN Server has some inherent hardware weaknesses. Firstly,

the number of appliances that can be registered is not scalable enough to be used in
environments that contain a very large number of appliances. Currently, the HAN Server
supports 10 appliances connected concurrently. The reason for this limitation is the
available RAM capacity. (The Ethernut 1.3 comes with 4KB of Internal RAM and 32KB
of external RAM.) However, this is clearly only a problem with the current hardware
implementation and, by no means, a deficiency in the architecture.
Another implementation problem is with displaying pictures. When a request to an

appliance’s web page comes from the Internet, a bridge function modifies the links within
the web page to make these links accessible over the Internet. If the web page contains
images, the bridge function cannot transfer these pictures because of the memory
limitations. The Ethernut needs at least 8KB of free RAM space to process an HTTP
request. When an image is requested via the bridge function, the Ethernut enters low
memory condition and all HTTP requests are dropped. The latest version of the Ethernut
PCB, which comes with 512KB of external RAM, is 2.1. If the HAN Server is imported to
the latest version, the memory problems can easily be solved. The HAN Server source code
is written compatible with the version 2.1.

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514 513
6. Conclusions

We designed an application architecture and built and demonstrated a prototype system
that can integrate web servers to everyday appliances with embedded microcontrollers to
control and manage them via web pages using regular web browsers over the Internet. The
system allows forming device networks such that their components can easily make use of
each others’ services and functions.

The unique architecture presented in this paper is used to develop the prototype system
which, in turn, is used to test and demonstrate the characteristics of our design. The main
contributions of this architecture are its lightweight design, automatic configuration and
utilization of widely available network protocols of TCP/IP and HTTP.

Our system provides for easy control of house appliances through the Internet, which
will give the freedom of ‘‘not worrying’’ if the oven is switched on or not when you are one
button close to control it via GPRS from your cell phone. The second benefit is the
coordinative structure of house devices with each other. Based on the use
of well-known and stable protocols such as TCP/IP, HTTP, and PPP; the system is
robust and easy to develop. It offers user-friendly, low-cost interfaces to the household
devices instead of expensive and complex ones. Self-configuration features of the system
make it very attractive for home environments. The implemented prototype system proves
that existing devices with remote controllers can easily be integrated to the system.

This study focuses on the infrastructure for using web pages as user interfaces. We do
not address web page design for better user interfaces. Therefore, the methods of
generating user friendly interfaces as web pages may be investigated in the future.

References

Bettstetter C, Renner C. A Comparison of Service Discovery Protocols and Implementation of the Service

Location Protocol, in Proceedings EUNICE 2000.

Borriello G, Want R. Embedded computation meets the world wide web. Commun ACM 2000:59–66.

Dong-Sung K, Jae-Min L, Wook HK. In: Kwan Y, editor. Design and implementation of home network systems

using UPnP middleware for networked appliances. IEEE transactions on consumer Electronics, 2002.

p. 963–72.

Ethernut Hardware Manual. URL: http://www.ethernut.de/

HAVi: Home Audio/Video Interoperability URL: http://www.havi.org

Jini Community. URL: http://www.jini.org

Nakajima T. Experiences with building middleware for audio and visual networked home appliances on

commodity software. ACM Multimedia, 2002.

Nichols J, Myers B. Studying the use of handhelds to control smart appliances. ICDCS’03, 2003.

p. 274–79.

Nichols J, Myers B, Higgins M, Hughes J, Harris T, Rosenfeld R, et al. Generating remote control interfaces

for complex appliances. Symposium on User Interface Software and Technology of the ACM, 2002.

p. 161–70.

Olsen Jr DR, Jefferies S, Nielsen T, Moyes W, Fredrickson P. Cross model interaction using XWeb. In:

Proceedings UIST’00: ACM SIGGRAPH symposium on user interface software and technology, San Diego,

CA, 2000. p. 191–200.

Pascoe B, Salutation Architectures and the newly defined service protocols from Microsoft and Sun, Salutation

Consortium, June 1999.

Ponnekanti SR, Lee B, Fox A, Hanrahan P, Winograd T. ICrafter: a service framework for ubiquitous computing

environments. UBICOMP Atlanta, 2001. p. 56–75.

Rekesh J. UPnP, Jini and Salutation—a look at some popular coordination frameworks for future networked

devices, California Software Labs, Technical Report, 1999.

http://www.ethernut.de/
http://www.havi.org
http://www.jini.org

ARTICLE IN PRESS
M. Can Filibeli et al. / Journal of Network and Computer Applications 30 (2007) 499–514514
Rettig, M. Prototyping for tiny fingers. Commun ACM, 1994. p. 21–7.

RFC 1661: The Point-to-Point Protocol.

Salutation Consortium. Salutation Architecture Specification Version 2.0c Part 1. the Salutation Consortium,

June 1, 1999a.

Salutation Consortium. Salutation Architecture Specification Version 2.0c Part 2. the Salutation Consortium,

June 1, 1999b.

UPnP Forum. URL: http://www.upnp.org

http://www.upnp.org

	Embedded web server-based home �appliance networks
	Introduction
	Everyday appliances with web servers
	Ethernut--open source project for building ethernet devices

	Device coordination in home and office networks
	Commercial platforms
	Relevant research activities

	Ethernut-based embedded web servers
	Architecture
	The prototype implementation

	Benefits and drawbacks of the HAN architecture
	Conclusions
	References

