Constrained and Distributed Optimal Control

Francesco Borrelli

University of California Berkeley, USA

Honeywell Laboratories

Ford Motor Company

Hybrid Control Design

&

Distributed Control for Large Scale Systems

Challenges

Hybrid Control Design

Switched Linear Systems Constraint Satisfaction

Organic Air Vehicle

Dale Swanson et al.

Vanes

At high level: Constrained Switched Linear System External Switch Selects Mode of Operation

Honeywell Laboratories

OAV Autonomous Flight

Objective

Follow given trajectories. Waypoints= [Time,Space]

Model

Switched Linear – External Switch

Constraints

Speed and acceleration function of mode

Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy an bumpy roads

Nonlinear (Piece-wise linear) and Constrained System

Ford Motor Company

Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy an bumpy roads

Nonlinear (Piece-wise linear) and Constrained System

Ford Motor Company

Integrated VDC via MPC Falcone, Kevizky, Borrelli from 2003 to today

Enabling path following capabilities

Davor Hrovat, Jahan Asgari, Eric Tseng, Mike Fodor

Ford Motor Company

Chameleon Visual Tracking

Objective

Tracking of a moving prey

Model PTZ camera: Linear

Prey: Linear point mass

Constraints

Pan Tilt and Zoom constraints

Prey in tracking window \forall unknown bounded

accelerations

Common Problem Features

- Objective
 - Minimization of performance index
- Models
 - Linear, Uncertain
 - Switched-Linear, Uncertain
- Constraints
 - States and Inputs

Solved Problem ~ 40 years ago

- Objective
 - Minimization of performance index
- Models
 - Linear, Uncertain
 - Switched-Linear, Uncertain
- Constraints
 - States and Inputs

Focus of Research ~ 10 years ago

- Objective
 - Minimization of performance index
- Models
 - Linear, Uncertain
 - Switched-Linear, Uncertain
- Constraints
 - States and Inputs

Balluchi, Bemporad, Di Benedetto, Goodwin, Johansen, Johansson, Kerrigan, Maciejowski, Mayne, Morari, Pappas, Rantzer, Rawlings, Sangiovanni-Vincentelli, Sastry, Sontag, Tomlin, and many others.

Hybrid Constrained Optimal Control

Borrelli from 1999 to 2004

$$\min_{U} \sum_{k=0}^{N} ||Qx(k)||_{p} + ||Ru(k)||_{p}$$
subj.to
$$x(k+1) = A_{i}x(k) + B_{i}u(k) + f_{i}$$
if $[x(k), u(k)] \in \mathcal{X}_{i}, i = 1, \dots, s$

$$Ex(k) + Lu(k) \leq M, k = 0, 1, 2, \dots$$

 $x(k) \in \mathbb{R}^n \times \{0, 1\}^{n_b}, \quad u(k) \in \mathbb{R}^m \times \{0, 1\}^{m_b}, \quad U \triangleq \{u(0), u(1), u(2), \ldots\}$

- Understanding solution structures and properties
- Solution computational methods and tools

Hybrid Constrained Optimal Control

Borrelli from 1999 to 2004

$$\begin{split} \min_{U} & \sum_{k=0}^{N} ||Qx(k)||_{p} + ||Ru(k)||_{p} \\ \text{subj.to} & x(k+1) = A_{i}x(k) + B_{i}u(k) + f_{i} \\ & \text{if } [x(k), u(k)] \in \mathcal{X}_{i}, \ i = 1, \dots, s \\ & Ex(k) + Lu(k) \leq M, \ k = 0, 1, 2, \dots \end{split}$$

 $x(k) \in \mathbb{R}^n \times \{0, 1\}^{n_b}, \ u(k) \in \mathbb{R}^m \times \{0, 1\}^{m_b}, \quad U \triangleq \{u(0), u(1), u(2), \ldots\}$

• Understanding solution structures and properties

• Solution computational methods and tools

Characterization of the Solution $(p=1,2,\infty)$

Borrelli et al, ACC, 2000 Borrelli et al, AUTOMATICA, 2005

The solution to the optimal control problem is a time varying PWA state feedback control law of the form

$$u^{*}(k)(x) = \begin{cases} F_{1}(k)x + G_{1}(k) & \text{if } x \in CR_{1}(k) \\ \vdots & \vdots & \vdots \\ F_{R}(k)x + G_{R}(k) & \text{if } x \in CR_{R}(k) \end{cases}$$

 ${CR_i}_{i=1}^R$ is a partition of the set of feasible states x(k).

Hybrid Constrained Optimal Control

Borrelli from 1999 to 2004

$$\min_{U} \sum_{k=0}^{N} ||Qx(k)||_{p} + ||Ru(k)||_{p}$$
subj.to
$$x(k+1) = A_{i}x(k) + B_{i}u(k) + f_{i}$$
if $[x(k), u(k)] \in \mathcal{X}_{i}, i = 1, \dots, s$

$$Ex(k) + Lu(k) \leq M, k = 0, 1, 2, \dots$$

 $x(k) \in \mathbb{R}^n \times \{0, 1\}^{n_b}, \ u(k) \in \mathbb{R}^m \times \{0, 1\}^{m_b}, \quad U \triangleq \{u(0), u(1), u(2), \ldots\}$

- Understanding solution structures and properties
- Solution computational methods and tools

Computational Flow

Borrelli et al, JOTA, 2003 Borrelli et al, AUTOMATICA, 2006 Baotic, Borrelli et al, SICON, 2007

Summary

Systematic Model-Based Control Design MIMO, PWA, Constraints, Logics

- Piecewise affine state feedback control law
- Off-line computation:
 - Automatic partitioning and control law synthesis
- On-line computation: Lookup Table Evaluation
- Extended to Min-Max Constrained Problems

Borrelli, Bemporad, Morari, TAC, 2003

MPC Algorithm

<u>At time t:</u> • Measure (or estimate) the current state x(t)

- Find the optimal input sequence $U^* \triangleq \{u^*(t), u^*(t+1), \dots, u^*(t+N)\}$
- Apply only $u(t)=u^*(t)$, and discard $u^*(t+1)$, $u^*(t+2)$, ...

Repeat the same procedure at time t + 1

Important Issues in Model Predictive Control

Even assuming perfect model, no disturbances:

predicted open-loop trajectories ≠ closed-loop trajectories

• Feasibility

Optimization problem may become infeasible at some future time step.

• Stability

Closed-loop stability is not guaranteed.

• Performance

Goal: $\min \sum_{i=0}^{\infty} L(x(k+i), u(k+i))$ What is achieved by repeatedly minimizing $\sum_{i=0}^{N-1} L(x(k+i), u(k+i))$

Feasibility and Stability Constraints

X_f is an Invariant Set*P(x)* is a Control Lyapunov Function.

Chameleon Visual Tracking

Objective

Tracking of a moving prey

Model PTZ camera: Linear

Prey: Linear point mass

Constraints

Pan Tilt and Zoom constraints

Prey in tracking window \forall unknown bounded

accelerations

Min-Max Predictive Control

$$J_j^*(x_j) = \min_{u_j} J_j(x_j, u_j)$$

subj. to
$$\begin{cases} Model \\ Constaints \end{cases}$$
$$J_j(x_j, u_j) = \max_{v_j, w_j} (\|Qx_j\|_p + \|Ru_j\|_p + V^*(x_{j+1}))$$

Model:
$$x_{j+1} = A(w_j)x_j + B(w_j)u_j + Ev_j$$

Uncertainty: Additive $v_i \in \mathcal{V}$, Polytypic $w_i \in \mathcal{W}$

Constraints: $Fx_j + Gu_j \leq f$ For all $v_i \in \mathcal{V}, w_i \in \mathcal{W}$

Addressing Feasibility: Control Law Design

y- Tracking Error

Robotic Chameleon Video

Avin, Borrelli et al., IROS, 2006

Explicit Min-Max MPC Solved at 50Hz

הטכניון-מכון טכנולוגי לישראל Technion-Israel Institute of Technology

Vehicle Dynamics Control

A driver aid for atypical road conditions, such as slippery, windy an bumpy roads

Nonlinear (Piece-wise linear) and Constrained System

Ford Motor Company

Traction Control Experiment

2000 Ford Focus, 2.01 4-cyl Engine, 5-speed Manual Trans

Borrelli et al., IEEE TCST, 2006

Ford Fusion Production Controller

"...Traction control on the V-6 test car was just right -- perhaps unique in all the industry...."

USA Today (Oct. 28-2005)

Ford Motor Company

Integrated VDC via MPC

Kevizky, Falcone, Borrelli from 2003 to today

vertica

✓ Front steering \checkmark Four brakes \checkmark Engine torque MIMO controller integrating ✓ Active suspensions local and global ✓ Active differential measurements coming from GPS, cameras, longitudinal Tateral pitch infrared and radar X \checkmark . Longitudinal, lateral and vertical velocity/accelerations \checkmark Yaw, roll and pitch angles/rates \checkmark Position and velocity in a global frame Controlling Yaw, Roll, Pitch, Vertical, Lateral and Longitudinal Dynamics via Multiple Input

Enabling path following capabilities

Davor Hrovat, Jahan Asgari, Eric Tseng, Mike Fodor

Ford Motor Company

Vehicle Model - 11 States, 6 Inputs

Inputs

- δ_{f} Front steering angle
- F_b FL,FR,RL,RR brakes
- τ Desired engine torque

States

- *y* Lateral velocity
- \dot{x} Longitudinal velocity
- ψ Yaw angle
- $\dot{\psi}$ Yaw rate
- *Y* Lateral position (I.F.)
- *x* Longitudinal position (I.F.)

$$x = [y, \dot{y}, \dot{x}, \psi, \dot{\psi}, Y, X, \omega_{fl}, \omega_{fr}, \omega_{rl}, \omega_{rr}]$$

Pacejka Tire model

 $F = f(\alpha, s, \mu, F_{\tau})$

Semi-empirical model calibrated on experimental data

Tire forces as a function of longitudinal slip, with slip angle α = [2, 5, 8, 12] deg and μ = 0.9

Autonomous Vehicle Tests and Experimental setup

Objective

- Minimize angle and lateral distance deviations from reference trajectory
- Double lane change
- Driving on snow/ice, at different entry speeds

System

- Jaguar X-type
- dSpace rapid prototyping system equipped with a DS1005 processor board Sampling time: 50 ms
- Differential GPS, gyros, lateral accelerometers

Acknowledgements

- University of Minnesota (Minneapolis, USA)
 - Tamas Keviczky, Gary Balas
- Unisannio (Benevento, Italy)
 - Paolo Falcone

• Honeywell Labs (Minneapolis,USA)

- Dharmashankar Subramanian, Kingsley Fregene, Datta Godbole
- Sonja Glavaski, Greg Stewart, Tariq Samad

• Ford Research Labs (Dearborn, USA)

- Jahan Asgari, Eric Tseng, Davor Hrovat

• Technion (Haifa, Israel)

- Ofiv Avni, Gadi Katzirinst, Ehud Rivlin, Hector Rotstein

• ETH (Zurich, Switzerland)

- Mato Baotic, Alberto Bemporad, Manfred Morari