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International Workshop on Hybrid Systems

Koç University, Istanbul, Turkey

May 15, 2008

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts



Introduction
Physical Model of the Car

Mixed-Integer OC
Scenarios & Results

Final Remarks

Outline of the Talk
Introduction

1 Introduction

2 Physical Model of the Car

3 A Mixed-Integer Optimal Control Approach

4 Test-driving Scenarios & Computational Results

5 Final Remarks

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts



Introduction
Physical Model of the Car

Mixed-Integer OC
Scenarios & Results

Final Remarks

Outline of the Talk
Introduction

Introduction

Mixed-Integer Optimal Control (MIOC)

Optimization of dynamic processes,

Nonlinear stiff/non-stiff ODE/DAE models,

Discrete and continuous controls,

Nonlinear constraints.

Tasks

Reduce infinite-dimensional MIOCP to NLP.

Want to avoid MINLP: How to treat discrete controls ?

Applications

Chemistry, Bioinformatics, Engineering, Economics, ...
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Introduction

Today’s Application

Driver shall complete a prescribed track:

Time optimal, energy optimal, pareto, periodic, ...

ODE model: Vehicle dynamics.

Continuous decisions: Acceleration, brakes, steering wheel ?

Discrete decisions: When to select which gear ?

Constraints: Stay on track, control bounds, engine speed, ...
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Forces

Fsf, Flf, Fsr, Flr: Side and lateral forces at front and rear tyre (Pacejka),

FAx, FAy: Accelerating forces attacking car’s c.o.g.

Source: M. Gerdts, Solving mixed-integer optimal control problems by branch&bound: A case

study from automobile test-driving with gear shift. Opt. Contr. Appl. Meth. 2005; 26:118.
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Coordinates

x , y Global coordinate system,

eSP Displacement of car’s center of gravity,

cx, cy Car body’s geometric center,

ψ Angle of longitudinal axis against global ordinate.
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Angles

αf Front wheel’s direction of movement against longitudinal axis,

αr Rear wheel’s direction of movement against longitudinal axis,

β Car’s direction of movement against longitudinal axis,

δ Steering wheel angle against longitudinal axis.
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Velocities

vf, vr Front and rear wheel’s velocity into directions αf, αr,

v Car’s velocity into direction β.
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Controls

δ̇ in [−0.5, 0.5] ⊂ R: Time derivative of steering wheel angle,

φ in [0, 1] ⊂ R: Pedal position, translates to engine torque Meng,

Fbrk in [0, 1.5 · 104] ⊂ R: Braking force.

µ in {1, 2, 3, 4, 5} ⊂ Z: Selected gear, translates to gearbox transm. ratio iµg .

Model part relevant for µ: Rear wheel drive

Fµlr :=
iµg ir

R
Mµ

eng(φ,wµeng)− FBr − FRr,

Mµ
eng(φ,wµeng) := some nonlinear function of φ and engine speed weng in gear µ

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts



Introduction
Physical Model of the Car

Mixed-Integer OC
Scenarios & Results

Final Remarks

Problem Class
Solution by Multiple Shooting
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Optimal Control Problem Class

Optimal Control Problem

min
tf,x(·),u(·),p

φ(tf, x(tf), p)

s.t. ẋ(t) = f (t, x(t), u(t), p) ∀t ∈ [t0, tf]

0 ≤ c(t, x(t), u(t), p) ∀t ∈ [t0, tf]

0 = r eq(t0, x(t0), . . . , tm, x(tm), p)

0 ≤ r in(t0, x(t0), . . . , tm, x(tm), p)

u(t) ∈ U ⊂ Rnu ∀t ∈ [t0, tf]

ODE states trajectory x(·), control functions u(·),

Free final time tf and global parameters p.
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Bock’s Direct Multiple Shooting Method: Controls

Discretization Grid

Select a partition of the time horizon [t0, tf] into m − 1 intervals

t0 < t1 < . . . < tm−1 < tm = tf.

Control Discretization

Select nq base functions bj : R→ Rnu . Using control parameters q ∈ Rnq , let for all

0 ≤ i ≤ m − 1

ui (t) :=

nq∑
j=1

qijbij (t) ∀t ∈ [ti , ti+1]

Choices: Piecewise constant/linear/cubic splines, continuity by external constraints.
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Bock’s Direct Multiple Shooting Method: States

State Discretization

Introduce initial states si for 0 ≤ i ≤ m − 1 and solve m IVPs

ẋi (t) = f (t, xi (t), qi , p) ∀t ∈ [ti , ti+1]

xi (ti ) := si

si+1 = x(ti+1; ti , si , qi , p)

Advantages

Existence of solution of IVP,

Improve condition of BVP,

Distribute nonlinearity,

Supply additional a-priori information using the si ,

Use state-of-the-art adaptive ODE/DAE solver with IND.
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Bock’s Direct Multiple Shooting Method: Discrete NLP

Optimal Control NLP

min
tf,si ,qi ,p

φ(tf, sm, p)

s.t. ẋi (t) = f (t, xi (t), qi , p) ∀t ∈ [ti , ti+1] ∀i

0 = si+1 − xi (ti+1; ti , si , qi , p) ∀i

0 = r eq(t0, x0, q0, . . . , tm, xm, qm, p)

0 ≤ r in(t0, x0, q0, . . . , tm, xm, qm, p)

xi (ti+1; ti , si , qi , p) denotes end point of solution of IVP i depending on initial values

of ti , si , qi , and p.
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Bock’s Direct Multiple Shooting Method: Solution of NLP

Exploiting Structure

Partial separability of objective,

Can evaluate intervals in parallel,

Block sparse jacobians and hessians,

High-rank updates to hessian (modified L-BFGS).

Solution of NLP by structured SQP method

Reduce NLP to size of single shooting system,

Dense active-set QP solvers: QPSOL, QPOPT, qpOASES, ...
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Mixed-Integer Optimal Control Problem Class

Optimal Control Problem

min
tf,x(·),u(·),ω(·),p

φ(tf, x(tf), p)

s.t. ẋ(t) = f (t, x(t), u(t), ω(t), p) ∀t ∈ [t0, tf]

0 ≤ c(t, x(t), u(t), ω(t), p) ∀t ∈ [t0, tf]

0 = r eq(t1, x(t1), . . . , tm, x(tm), p)

0 ≤ r in(t1, x(t1), . . . , tm, x(tm), p)

u(t) ∈ U ⊂ Rnu ∀t ∈ [t0, tf]

ω(t) ∈ Ω ⊂ Rnω ∀t ∈ [t0, tf]

Ω := {ω1, ω2, . . . , ωnw} ⊂ Rnω is a finite set of control choices, |Ω| <∞.
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Inner Convexification for Integer Controls

Inner Convexification

Let Ω be the finite set of all control choices.

Relax ω(t) ∈ Ω to w(t) ∈ conv Ω ⊂ Rnω .

Effects

+ Same number of controls nω .

+ Dense QPs solvers faster, less active set changes.

– Model must be evaluatable & valid for potentially nonintegral w(t).

– How to reconstruct integral choice ω?(t) from relaxed w?(t) ?
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Outer Convexification for Integer Controls

Outer Convexification

For all t and for each member ωi ∈ Ω ⊂ Rnω introduce wi (t) ∈ {0, 1}. Let then

ω(t) :=

nw∑
i=1

ωi wi (t), 1 =

nw∑
i=1

wi (t) (SOS1)

Relax all wi (t) ∈ {0, 1} to wi (t) ∈ [0, 1] ⊂ R to obtain choice ω(t).

Effects

– Increased number of controls nw = |Ω| instead of nω .

+ Model can rely on integrality of the fixed evaluation points ωi .

+ Relaxed solution often bang-bang in wi (t), thus integer.

+ If not, SUR-0.5 as ε-approximative scheme.

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts



Introduction
Physical Model of the Car

Mixed-Integer OC
Scenarios & Results

Final Remarks

Scenario 1: Avoiding an Obstacle
Computational Effort
Scenario 2: Racing on an ellipsoidal track

Avoiding an Obstacle

Start to the left, driving straight ahead at 10 km/h.

Complete track in a time-optimal fashion.

Predefined evasive manoeuvre to avoid obstacle.
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Avoiding an Obstacle: Initialization

Example: 40 multiple shooting nodes.
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Avoiding an Obstacle: Solution

Example: 40 multiple shooting nodes.

Differential state trajectories:

Control trajectories:
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Scenario 1: Avoiding an Obstacle
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Scenario 2: Racing on an ellipsoidal track

Avoiding an Obstacle: Constraint Discretization

Example: 10, 40, and 80 multiple shooting nodes.
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Why is it integer ?

Maximum indicated engine torque depending on velocity.
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Scenario 1: Avoiding an Obstacle
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Scenario 2: Racing on an ellipsoidal track

Computation Times

Branch & Bound

N tf hh:mm:ss

10 not given

20 6.779751 00:23:52

40 6.786781 232:25:31

80 - -

[M. Gerdts, 2005] on a P-III 750 MHz

Outer Convexification

N tf hh:mm:ss

10 6.798389 00:00:07

20 6.779035 00:00:24

40 6.786730 00:00:46

80 6.789513 00:04:19

[K. et al., 2008] on an Athlon 2166 MHz
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Racing on an ellipsoidal track

Ellipsoidal track of 340m x 160m,

Width of 5 car widths,

Find time-optimal periodic solution.

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts



Introduction
Physical Model of the Car

Mixed-Integer OC
Scenarios & Results

Final Remarks

Scenario 1: Avoiding an Obstacle
Computational Effort
Scenario 2: Racing on an ellipsoidal track

Racing on an ellipsoidal track: Solution

Differential state trajectories:

Control trajectories:
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Racing on an ellipsoidal track: Solution
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Thank you

Future Work

More complicated tasks

More complicated circuits (think Istanbul Park, Hockenheimring, ...);

requires slight modification of model & coordinate system.

More detailed modelling of integer decision effects.

More sophisticated techniques

For longer tracks: use a moving horizon optimization technique.

Closed-loop offline optimization.

Closed-loop online optimization with an industry partner.

Real-time Feasibility

Computation for reasonable discretization quite fast.

Active set QP can solve a sequence of related problems at cheap additional cost.
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Thank you for your attention.

Questions ?
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