

Time-Optimal Control of Automobile Test Drives with Gear Shifts

Christian Kirches

Interdisciplinary Center for Scientific Computing (IWR)

Ruprecht-Karls-University of Heidelberg, Germany

joint work with

Sebastian Sager, Hans Georg Bock, Johannes P. Schlöder

International Workshop on Hybrid Systems

Koç University, Istanbul, Turkey

May 15, 2008

イロト イヨト イヨト イヨト

Introduction

Physical Model of the Car Mixed-Integer OC Scenarios & Results Final Remarks

Outline of the Talk Introduction

- Physical Model of the Car
- 3 A Mixed-Integer Optimal Control Approach
- Test-driving Scenarios & Computational Results

5 Final Remarks

イロト イポト イヨト イヨト

Introduction

Physical Model of the Car Mixed-Integer OC Scenarios & Results Final Remarks

Outline of the Talk Introduction

Introduction

Mixed-Integer Optimal Control (MIOC)

- Optimization of dynamic processes,
- Nonlinear stiff/non-stiff ODE/DAE models,
- Discrete and continuous controls,
- Nonlinear constraints.

Tasks

- Reduce infinite-dimensional MIOCP to NLP.
- Want to avoid MINLP: How to treat discrete controls ?

Applications

• Chemistry, Bioinformatics, Engineering, Economics, ...

イロト イヨト イヨト イヨト

Introduction

Physical Model of the Car Mixed-Integer OC Scenarios & Results Final Remarks

Outline of the Talk Introduction

Introduction

Today's Application

- Driver shall complete a prescribed track: Time optimal, energy optimal, pareto, periodic, ...
- ODE model: Vehicle dynamics.
- Continuous decisions: Acceleration, brakes, steering wheel ?
- Discrete decisions: When to select which gear ?
- Constraints: Stay on track, control bounds, engine speed, ...

<ロト <回ト < 三ト < 三ト

э

Forces States Controls

- F_{sf}, F_{lf}, F_{sr}, F_{lr}: Side and lateral forces at front and rear tyre (Pacejka),
- F_{Ax}, F_{Ay}: Accelerating forces attacking car's c.o.g.

Source: M. Gerdts, *Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift.* Opt. Contr. Appl. Meth. 2005; 26:118.

・ロト ・回ト ・ヨト ・ヨト

æ

Forces States Controls

Coordinates

- x, y Global coordinate system,
- e_{SP} Displacement of car's center of gravity,
- c_x, c_y Car body's geometric center,
- ψ Angle of longitudinal axis against global ordinate.

Image: A match a ma

(4) (E) (b)

Forces States Controls

- $\alpha_{\rm f}$ Front wheel's direction of movement against longitudinal axis,
- α_r Rear wheel's direction of movement against longitudinal axis,
- β Car's direction of movement against longitudinal axis,
- δ Steering wheel angle against longitudinal axis.

イロト イヨト イヨト イヨ

Forces States Controls

Velocities

- $v_{\rm f}$, $v_{\rm r}$ Front and rear wheel's velocity into directions $\alpha_{\rm f}$, $\alpha_{\rm r}$,
- v Car's velocity into direction β .

・ロト ・日下・ ・ ヨト

Forces States Controls

500

Controls

- $\dot{\delta}$ in $[-0.5, 0.5] \subset \mathbb{R}$: Time derivative of steering wheel angle,
- ϕ in $[0,1] \subset \mathbb{R}$: Pedal position, translates to engine torque M_{eng} ,
- F_{brk} in $[0, 1.5 \cdot 10^4] \subset \mathbb{R}$: Braking force.
- μ in $\{1, 2, 3, 4, 5\} \subset \mathbb{Z}$: Selected gear, translates to gearbox transm. ratio i_g^{μ} .

Model part relevant for μ : Rear wheel drive

$$F_{
m lr}^{\mu} := rac{i_{
m g}^{\mu} i_{
m r}}{R} M_{
m eng}^{\mu}(\phi, w_{
m eng}^{\mu}) - F_{
m Br} - F_{
m Rr},$$

 $M^{\mu}_{
m eng}(\phi, w^{\mu}_{
m eng}) :=$ some nonlinear function of ϕ and engine speed $w_{
m eng}$ in gear μ

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Optimal Control Problem

$$\begin{split} \min_{t_{f}, x(\cdot), u(\cdot), p} & \phi(t_{f}, x(t_{f}), p) \\ \text{s.t.} & \dot{x}(t) = f(t, x(t), u(t), p) & \forall t \in [t_{0}, t_{f}] \\ & 0 \leq c(t, x(t), u(t), p) & \forall t \in [t_{0}, t_{f}] \\ & 0 = r^{\text{eq}}(t_{0}, x(t_{0}), \dots, t_{m}, x(t_{m}), p) \\ & 0 \leq r^{\text{in}}(t_{0}, x(t_{0}), \dots, t_{m}, x(t_{m}), p) \\ & u(t) \in \mathcal{U} \subset \mathbb{R}^{n_{u}} & \forall t \in [t_{0}, t_{f}] \end{split}$$

- ODE states trajectory $x(\cdot)$, control functions $u(\cdot)$,
- Free final time t_f and global parameters p.

イロン イヨン イヨン イヨン

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Bock's Direct Multiple Shooting Method: Controls

Discretization Grid

Select a partition of the time horizon $[t_0, t_f]$ into m-1 intervals

 $t_0 < t_1 < \ldots < t_{m-1} < t_m = t_f.$

Control Discretization

Select n_q base functions $b_j: \mathbb{R} \to \mathbb{R}^{n_u}$. Using control parameters $q \in \mathbb{R}^{n_q}$, let for all $0 \le i \le m-1$

$$u_i(t):=\sum_{j=1}^{n_{\mathbf{q}}}q_{ij}b_{ij}(t) \qquad orall t\in [t_i,t_{i+1}].$$

Choices: Piecewise constant/linear/cubic splines, continuity by external constraints.

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Bock's Direct Multiple Shooting Method: States

State Discretization

Introduce initial states s_i for $0 \le i \le m-1$ and solve m IVPs

$$egin{aligned} \dot{x}_i(t) &= f(t, x_i(t), q_i, p) & & \forall t \in [t_i, t_{i+1}] \ x_i(t_i) &:= s_i \ & s_{i+1} &= x(t_{i+1}; t_i, s_i, q_i, p) \end{aligned}$$

Advantages

- Existence of solution of IVP,
- Improve condition of BVP,
- Distribute nonlinearity,
- Supply additional a-priori information using the s_i,
- Use state-of-the-art adaptive ODE/DAE solver with IND.

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Bock's Direct Multiple Shooting Method: Discrete NLP

Optimal Control NLP

$$\begin{array}{ll} \min_{f_{i},s_{i},q_{i},p} & \phi(t_{f},s_{m},p) \\ \text{s.t.} & \dot{x}_{i}(t) = f(t,x_{i}(t),q_{i},p) & \forall t \in [t_{i},t_{i+1}] \, \forall i \\ & 0 = s_{i+1} - x_{i}(t_{i+1};t_{i},s_{i},q_{i},p) & \forall i \\ & 0 = r^{\text{eq}}(t_{0},x_{0},q_{0},\ldots,t_{m},x_{m},q_{m},p) \\ & 0 \leq r^{\text{in}}(t_{0},x_{0},q_{0},\ldots,t_{m},x_{m},q_{m},p) \end{array}$$

 $x_i(t_{i+1}; t_i, s_i, q_i, p)$ denotes end point of solution of IVP *i* depending on initial values of t_i , s_i , q_i , and p.

・ロト ・回ト ・ヨト ・ヨト

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Bock's Direct Multiple Shooting Method: Solution of NLP

Exploiting Structure

- Partial separability of objective,
- Can evaluate intervals in parallel,
- Block sparse jacobians and hessians,
- High-rank updates to hessian (modified L-BFGS).

Solution of NLP by structured SQP method

- Reduce NLP to size of single shooting system,
- Dense active-set QP solvers: QPSOL, QPOPT, qpOASES, ...

イロト イポト イヨト イヨト

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Mixed-Integer Optimal Control Problem Class

Optimal Control Problem

$$\begin{split} \min_{t_{f}, x(\cdot), u(\cdot), \omega(\cdot), \rho} & \phi(t_{f}, x(t_{f}), \rho) \\ \text{s.t.} & \dot{x}(t) = f(t, x(t), u(t), \omega(t), \rho) & \forall t \in [t_{0}, t_{f}] \\ & 0 \leq c(t, x(t), u(t), \omega(t), \rho) & \forall t \in [t_{0}, t_{f}] \\ & 0 = r^{eq}(t_{1}, x(t_{1}), \dots, t_{m}, x(t_{m}), \rho) \\ & 0 \leq r^{in}(t_{1}, x(t_{1}), \dots, t_{m}, x(t_{m}), \rho) \\ & u(t) \in \mathcal{U} \subset \mathbb{R}^{n_{u}} & \forall t \in [t_{0}, t_{f}] \\ & \omega(t) \in \Omega \subset \mathbb{R}^{n_{\omega}} & \forall t \in [t_{0}, t_{f}] \end{split}$$

 $\Omega := \{\omega^1, \omega^2, \dots, \omega^{n_{\sf W}}\} \subset \mathbb{R}^{n_{\omega}} \text{ is a finite set of control choices, } |\Omega| < \infty.$

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Inner Convexification for Integer Controls

Inner Convexification

Let Ω be the finite set of all control choices.

Relax $\omega(t) \in \Omega$ to $w(t) \in \operatorname{conv} \Omega \subset \mathbb{R}^{n_{\omega}}$.

Effects

- + Same number of controls n_{ω} .
- + Dense QPs solvers faster, less active set changes.
- Model must be evaluatable & valid for potentially nonintegral w(t).
- How to reconstruct integral choice $\omega^{\star}(t)$ from relaxed $w^{\star}(t)$?

イロト イヨト イヨト イヨト

Problem Class Solution by Multiple Shooting Treatment of Integer Controls

Outer Convexification for Integer Controls

Outer Convexification

For all t and for each member $\omega^i \in \Omega \subset \mathbb{R}^{n_\omega}$ introduce $w_i(t) \in \{0,1\}$. Let then

$$\omega(t) := \sum_{i=1}^{n_{w}} \omega^{i} w_{i}(t), \qquad \qquad 1 = \sum_{i=1}^{n_{w}} w_{i}(t) \quad (SOS1)$$

Relax all $w_i(t) \in \{0,1\}$ to $w_i(t) \in [0,1] \subset \mathbb{R}$ to obtain choice $\omega(t)$.

Effects

- Increased number of controls $n_w = |\Omega|$ instead of n_ω .
- + Model can rely on integrality of the fixed evaluation points ω^i .
- + Relaxed solution often bang-bang in $w_i(t)$, thus integer.
- + If not, SUR-0.5 as ε -approximative scheme.

イロト イヨト イヨト イヨト

э

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

(ロ) (部) (E) (E)

Avoiding an Obstacle

- Start to the left, driving straight ahead at 10 km/h.
- Complete track in a time-optimal fashion.
- Predefined evasive manoeuvre to avoid obstacle.

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

Avoiding an Obstacle: Initialization

• Example: 40 multiple shooting nodes.

Time-Optimal Automobile Test Drives with Gear Shifts

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

Avoiding an Obstacle: Solution

- Example: 40 multiple shooting nodes.
- ۲ Differential state trajectories:

Control trajectories: ٠

Christian Kirches, University of Heidelberg

Time-Optimal Automobile Test Drives with Gear Shifts

-

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

・ロト ・回ト ・ヨト

=

Avoiding an Obstacle: Constraint Discretization

• Example: 10, 40, and 80 multiple shooting nodes.

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

(ロ) (同) (E) (E)

æ

Why is it integer ?

• Maximum indicated engine torque depending on velocity.

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

Computation Times

Branch & Bound					Outer Convexification				
	N	t _f	hh:mm:ss			Ν	t _f	hh:mm:ss	
	10	not given				10	6.798389	00:00:07	
	20	6.779751	00:23:52			20	6.779035	00:00:24	
	40	6.786781	232:25:31			40	6.786730	00:00:46	
	80	-	-			80	6.789513	00:04:19	
[M. Gerdts, 2005] on a P-III 750 MHz					[K. et al., 2008] on an Athlon 2166 MHz				

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts

イロト イヨト イヨト イヨト

æ

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

(ロ) (部) (E) (E)

Racing on an ellipsoidal track

- Ellipsoidal track of 340m × 160m,
- Width of 5 car widths,
- Find time-optimal periodic solution.

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

Racing on an ellipsoidal track: Solution

Differential state trajectories:

Control trajectories:

イロトイア・イヨト イラト ラーマー Time-Optimal Automobile Test Drives with Gear Shifts

Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

イロト イヨト イヨト イヨト

3

Racing on an ellipsoidal track: Solution

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts

Extensions and Future Work Thank you

nac

Future Work

More complicated tasks

- More complicated circuits (think Istanbul Park, Hockenheimring, ...); requires slight modification of model & coordinate system.
- More detailed modelling of integer decision effects.

More sophisticated techniques

- For longer tracks: use a moving horizon optimization technique.
- Closed-loop offline optimization.
- Closed-loop online optimization with an industry partner.

Real-time Feasibility

- Computation for reasonable discretization quite fast.
- Active set QP can solve a sequence of related problems at cheap additional cost.

イロン 不得入 不足入 不足入 一足

Extensions and Future Work Thank you

References

References

- C. Kirches, S. Sager, H.G. Bock, J.P. Schlöder. *Time-optimal control of automobile test drives with gear shifts*. Opt. Contr. Appl. Meth. 2008; (submitted).
- M. Gerdts. Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift. Opt. Contr. Appl. Meth. 2005; 26:1-18.
- M. Gerdts. A variable time transformation method for mixed-integer optimal control problems. Opt. Contr. Appl. and Meth. 2006; 27(3):169-182.
- S. Sager. Numerical methods for mixedinteger optimal control problems. Der andere Verlag: Tönning, Lübeck, Marburg, 2005. iSBN 3-89959-416-9. http://sager1.de/sebastian/downloads/Sager2005.pdf.

イロン イヨン イヨン イヨン

Extensions and Future Work Thank you

Thank you for your attention.

Questions ?

Christian Kirches, University of Heidelberg Time-Optimal Automobile Test Drives with Gear Shifts

イロト イヨト イヨト イヨト

Э