

A Mode-Based Hybrid Controller Design for Agile Maneuvering Unmanned F-16 Aircraft

N. Kemal Ure, Prof. Gokhan Inalhan

Istanbul Technical University

Controls and Avionics Laboratory

CAL.UUBF.ITU

CAL INDUSTRIAL PROJECTS

İTÜ LCH AVIONICS SYSTEMS

- Primary Funding Sources
 DPT
 - ASELSAN

İTÜ ASELSAN Research Flight Simulator

CAL RESEARCH PROJECTS

Mission Planning for Manned and Unmanned Fleets

Bus backboned Microavionics

Agile Nonlinear Flight Controls

CAL STUDENT PROJECTS

MicroBee

• Micro-avionics test platforms : Flight controls and image processing

ITU-pSAT I

Scheduled for launch
In late 2008- early 2009

Image Processing

ITU pSAT I Engineering Model

Outline

- Problem Statement and Previous Work
- F-16 Aircraft Model
- Motion Language for Agile Maneuvering
- Hybrid System Representation of Agile Maneuvers
- Properties and advantages of Hybrid System Description
- Nonlinear Sliding Control of full flight envelope Dynamics
- Simulations

- Autonomous Control of Agile Maneuvers over full flight envelope
 - Perform agile maneuvers in case of evasive and tactical advantage gain positions
 - Output tracking over full flight envelope, especially in extreme cases (high AOA , high g)
- Design flight trajectory generation algorithms over full flight envelope
 - Agile and competitive maneuvering in dynamically changing and complex environments

Two Facets of the Problem

• Autonomous design and execution of agile maneuvers

• A low level enabling technology for cooperative control of UAV fleets that driven by performance goals

Agile Maneuver Example

File View Location Autopilot Weather Equipment ATC/AI Debug Help

Challenges

- Generation of agile maneuvers
 - Lack of general expressions for six degrees of freedom flight dynamics
 - Complexity of decomposing the maneuvers in state space
 - Feasibility constraints on maneuvers
- Execution of agile maneuvers
 - Highly coupled, nonlinear dynamics
 - Demand for high precision tracking on high magnitude angular rates
 - Robustness properties

- Hybrid Systems Description for Flight Maneuvering
 - Hybrid and modal representation of single and multiple aircraft dynamics (Tomlin, 1998),(Frazzoli,2002)
- Experimental Work on Agile Maneuvering
 - Gavrilets, Feron (MIT) : outdoors
 - How (MIT) : indoors

Major issues that is still open...

- Full flight envelope dynamics?
- Trajectory-free controller design?

Coordinated Automata Description

	M1	M2	M3	Description of Maneuver Segment	
q ₁	А	ø	ø	Level Flight	
q ₂	В	ø	ø	Climb/Descent	
q ₃	А	С	ø	Straight Rolling Flight	
q ₄	В	С	ø	C/D Rolling Flight	
q ₅	А	ø	D	AOA Regulation in Level Flight	
q ₆	А	ø	Е	Coordinated Turn	
q ₇	В	ø	D	Pitch Up/Down	
q ₈	В	ø	Е	Turning C/D	
q ₉	В	С	D(E)	Barrel Roll, Helix, 3D Maneuvers	
q ₁₀	А	С	Е	Rolling Circle	

 U_i

 σ_{i}

Solution

- A structured finite automaton, spanning full flight envelope
- Nonlinear sliding manifold control ٠ system that tracks the outputs of the automaton

Aircraft Model

- •A Full Scale 6 DOF High Fidelity Dynamic Model
- Highly Coupled Nonlinear State Equations

•52 Look-up Tables To Build-up Aerodynamic Forces and Moments through control surface deflections (Including Stall Effect)

- •Actuator Models with rate limits and saturation
- •Afterburning Turbofan Engine Model controlled via throttle

State Vector $X = \begin{bmatrix} V_T & \alpha & \beta & \phi & \theta & \psi & P & Q & R & n_p & e_p & h \end{bmatrix}^T$

Aircraft Model Cont

Aircraft Model Cont

$C_{\rm X}(\alpha,\beta,\delta_{\rm h}=10^{\rm O})$

BETA	-30.0	-25.0	-20.0	-15.0	-10.0	- 8.0	- 6.0	- 4.0	- 2.0	
	0.0	+ 2.0	+ 4.0	+ 6.0	. 8.0	+10.0	+15.0	+20.0	+25.0	+30.0
ALPHA										
-20.0	-,10230	10120	10800	10470	10350	09910	09290	09100	08840	
	08840	09070	09080	09130	09180	09430	09550	09880	09200	09310
-15.0	10380	10670	10570	10300	09980	09980	09920	09990	10060	
and the second second	10100	10070	10090	10040	10000	10060	10380	10650	10750	10460
-10.0	09630	10110	10130	10160	10060	10130	10170	10280	10390	1992 E.O. 1992 C.
	10920	10400	10290	10220	10080	10140	10240	10210	10190	09710
- 5.0	-,06640	07150	07550	07800	08450	08730	08850	08960	08980	
	09020	08940	08940	08680	08510	08210	07540	07310	06910	06400
0.0	04720	04980	05210	05330	05670	05780	05RA0	05950	06020	1.0.0.000000000000000000000000000000000
	06060	06000	05920	05840	05660	05500	05140	05040	04810	04550
+ 5.0	01460	01340	01240	01300	01700	01760	01430	01890	02050	0.0000000000000000000000000000000000000
	02000	02060	01950	01840	01690	01610	01210	01150	01340	01550
+10.0	.01820	.02420	.02810	.03130	.03260	.03310	.03220	.03270	.03200	S. Carner
	.03130	.03130	.03230	.03290	.03280	.03260	.03130	.02810	.02420	.01820
+15.0	.05370	.06020	.06890	.07360	.07850	.08080	.08240	.08360	.08350	Accessed
	.08290	.08330	.08290.	.08200	.04100	.07850	.07360	.06890	.06020	.05370
+20.0	.08710	.09240	.09070	.08980.	.09750	.09960	.09990	.09980	.09740	
	.09710	.09810	.09#70	.00020	.09590	.09470	.08700	.08790	.08960	.08430
+25.0	.09160	.10160	.10080	.09060	.10070	.10270	.10270	.09950	.09710	
	.09490	.09600	.09850	. 19990	.09840	.09810	.09700	.09820	.09900	.08900
+30.0	.05090	.07140	.07500	.08900	.09530	.10720	.11080	.11130	.11160	A 10 10 10 10 10 10 10 10 10 10 10 10 10
1000	-11040	.10930	.10960	.10770	.10680	.10460	.09830	.08430	.08070	.06020
+35.0	-04810	.05600	.07050	.07830	.09290	.09870	·11280	.11950	.12070	509 (A. 1997)
	-12010	.11990	.12100	.11880	.11550	.10810	.09750	.08570	.07120	.06330
+40.0	.06640	.07410	.06940	.07850	.09260	.09510	.10540	.10910	.11270	
	.11270	.11390	.11000	-10390	.10310	.09880	.08470	.07560	.08030	.07260
+45.0	.08460	.08110	.08420	.08450	.09330	.09380	.09220	.09460	.09920	
	.09960	.09890	.09780	.09540	.09220	.08940	.08060	.08030	.07720	.08070
+50.0	.09080	.09850	.10110	.09990	.10630	.10610	.10180	.09960	.10210	
	,10710	.10710	.10640	.10700	.10360	.10320	.09AA0	.09800	.09540	.08770
+55.0	.08420	.08490	.07900	.08820	.10250	.10100	.09930	.09800	.09910	
	.10300	.09720	.08970	.09140	.09690	.10150	.08720	.07800	.08590	.08320
+60.0	.07490	.08230	.08490	.07940	.08310	.08410	.08960	.09080	.09150	
	.09140	.09080	.08930	.08950	.08890	.08680	.08310	.08860	.08600	.07860
+70.0	.05040	.05000	.05040	.04670	.08130	.08110	.09720	.09500	.10750	Carrow
	.11900	.11010	.10010	.09670	.09580	.09310	.05450	.06220	.06180	.06220
+80.0	.04210	.03800	.03550	.03970	.04200	.04170	.04240	.04780	.04730	
	.05190	.04840	.04650	.04890	.04720	.04500	.04270	.03850	.04100	.04510
+90.0	.04330	.04040	.03950	.04670	.04950	.04920	.04990	.04840	.05000	
	.05040	.04950	.04630	.04570	.05100	.04820	.04540	.03820	.03910	.04200

Aerodynamic Model

	Deflection Limit (deg)	Rate Limit (deg/s)
Elevator	25	60
Ailerons	21.5	80
Rudder	30	120

Aircraft Model Cont

	$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} c\theta^* c\psi & (-c\phi^* s\psi + s\phi^* s\theta^* c\psi) & (s\phi^* s\psi + c\phi^* s\theta^* c\psi) \\ c\theta^* s\psi & (c\phi^* c\psi + s\phi^* s\theta^* s\psi) & (-s\theta^* c\psi + c\phi^* s\theta^* s\psi) \\ -s\theta & s\phi^* s\theta & c\phi^* c\theta \end{bmatrix} \begin{bmatrix} U \\ V \\ W \end{bmatrix}$	- - 7
Dynamic Model Rigid Body Equations	$m\left\{ \begin{bmatrix} \dot{U} \\ \dot{V} \\ \dot{W} \end{bmatrix} + \begin{bmatrix} 0 & -R & Q \\ R & 0 & -P \\ -Q & P & 0 \end{bmatrix} \right\} = mg\left[\begin{array}{c} -\sin\theta \\ \cos\theta\sin\phi \\ \cos\theta\cos\phi \end{bmatrix} + \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$	
Physical Data	$\begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & s\psi / c\theta & c\phi / c\theta \\ 0 & c\phi & -s\phi \\ 1 & s\phi^* t\theta & c\phi^* t\theta \end{bmatrix} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$	
	$\begin{bmatrix} I \end{bmatrix} \begin{bmatrix} \dot{P} \\ \dot{Q} \\ \dot{R} \end{bmatrix} + \begin{bmatrix} 0 & -R & Q \\ R & 0 & -P \\ -Q & P & 0 \end{bmatrix} \times \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$	

 U_i

 σ_{i}

Mode

Selector

Solution

A structured finite automaton, ٠ spanning full flight envelope

Regulation of

Non Angular

Velocity

Variables

(DSM)

Nonlinear sliding manifold control • system that tracks the outputs of the automaton

Hybrid System Description for Control Purposes

$$MBMA = \{Q, X, U, D, \Sigma, f, \delta, Dom, Init, \Omega\}$$

<u>Set of Discrete States = Modes:</u>

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\} = \{\text{Level}, \text{Climb}, \text{Roll}, \text{Long}, \text{Loop}, \text{Lat. Loop}, \text{3D}, \text{Safety}\}$

Set of Continuous States = Flight dynamics

$$X = \begin{bmatrix} V_T & \alpha & \beta & \phi & \theta & \psi & P & Q & R & n_p & e_p & h \end{bmatrix}^T$$

<u>Disturbances = Inputs From Environment</u> (Wind Gusts, Sensor Noises ,..etc)

Maneuver Identification

Mode Sequence = Maneuver Sequence

 $s = \sigma(1)\sigma(2)\sigma(3)....\sigma(n) \in \Sigma$

Modal Inputs = Maneuver Parameters

$$r = u(1)u(2)u(3)...u(n) \in U$$

- Discrete Input Strings (Mode switching sequence)
- Continuous Input Strings (Maneuver Parameters)

$$s = \sigma(1)\sigma(2)\sigma(3)....\sigma(n) \in \Sigma$$

$$r = u(1)u(2)u(3)....u(n) \in U$$

• Trajectory Acceptance Condition $\Omega = (q_1 \in Init) \land (q_{i+1} = \delta_{i,i+1}(q_i, \sigma_{i,i+1})) \land (q_i, x_i \in Dom)$

This is the starting point for trajectory/maneuver planning algorithms...

• Sequences of maneuver modes are not necessarily arbitrary and there can be limitations on when the switch is feasible.

• Modal Inputs and their transitions must be in line with fundamental flight limitations

Mode Transition Table!!!

•Either pitch angle or roll angle (sometimes both) must be regulated to a specific value, to translate between certain modes

δ_{ij}	q_{1}	q_2	$q_{\scriptscriptstyle 3}$	q_{4}	q_5	q_{6}	q_7	$q_{\scriptscriptstyle 8}$	q_9	$q_{\rm 10}$
q_1	1	1	1	1	$ heta^*$	ϕ^{*}	1	ϕ^{*}	ϕ^{*}	ϕ^{*}
q_2	θ^{*}	1	θ^{*}	1	θ^{*}	$ heta^*, \phi^*$	1	ϕ^{*}	ϕ^*	θ^*, ϕ^*
q_3	1	1	1	θ^*	1	1	1	1	1	1
q_4	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	1	$ heta^*, \phi^*$	θ^{*}	ϕ^*	1	1	θ^{*}
q_5	1	1	1	1	1	ϕ^{*}	1	ϕ^{*}	ϕ^{*}	ϕ^*
q_6	ϕ^{*}	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	ϕ^{*}	1	ϕ^*	1	1	1
q_7	$ heta^*, \phi^*$	1	$ heta^*, \phi^*$	ϕ^*	θ^{*}	$ heta^*, \phi^*$	1	ϕ^{*}	ϕ^*	ϕ^*
$q_{\scriptscriptstyle 8}$	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	ϕ^*	θ^*, ϕ^*	$ heta^*$	1	1	1	θ^{*}
q_9	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	θ^{*}	1	1	1	θ^{*}
q_{10}	$\overline{ heta}^*, \phi^*$	ϕ^{*}	ϕ^{*}	ϕ^{*}	$\overline{ heta}^*, \phi^*$	1	ϕ^{*}	1	1	1

Hybrid System

, }	δ_{ij}	q_{1}	q_2	$q_{\scriptscriptstyle 3}$	q_{4}	q_5	$q_{\rm 6}$	q_7	$q_{\scriptscriptstyle 8}$	q_9	q_{10}
'd S	q_1	1	1	1	1	$ heta^*$	ϕ^*	1	ϕ^{*}	ϕ^*	ϕ^*
	q_2	θ^{*}	1	$ heta^*$	1	$ heta^*$	θ^*, ϕ^*	1	ϕ^{*}	ϕ^*	θ^*, ϕ^*
	q_3	1	1	1	θ^{*}	1	1	1	1	1	1
}	q_4	θ^*, ϕ^*	ϕ^*	$ heta^*, \phi^*$	1	$ heta^*, \phi^*$	θ^{*}	ϕ^{*}	1	1	θ^*
	q_5	1	1	1	1	1	ϕ^*	1	ϕ^{*}	ϕ^*	ϕ^*
	$q_{\rm 6}$	ϕ^*	θ^*, ϕ^*	ϕ^{*}	θ^*, ϕ^*	ϕ^{*}	1	ϕ^{*}	1	1	1
	q_7	θ^*, ϕ^*	1	θ^*, ϕ^*	ϕ^*	θ^{*}	θ^*, ϕ^*	1	ϕ^{*}	ϕ^*	ϕ^*
	$q_{\scriptscriptstyle 8}$	θ^*, ϕ^*	ϕ^*	$ heta^*, \phi^*$	ϕ^*	$ heta^*, \phi^*$	θ^{*}	1	1	1	θ^*
	q_9	θ^*, ϕ^*	ϕ^*	$ heta^*, \phi^*$	ϕ^*	$ heta^*, \phi^*$	θ^{*}	1	1	1	θ^*
	q_{10}	θ^*, ϕ^*	ϕ^{*}	ϕ^{*}	ϕ^*	$ heta^*, \phi^*$	1	ϕ^{*}	1	1	1

 U_i

 σ_{i}

Mode

Selector

Solution

• A structured finite automaton, spanning full flight envelope

Regulation of

Non Angular

Velocity

Variables

(DSM)

Outer Loop

• Nonlinear sliding manifold control system that tracks the outputs of the automaton

- Switching sequence for the modes are already given by motion plan
 - Aim is to track each mode's modal input
- We can define different output variables for each maneuver mode
 - Dynamics are different (simplified ?) for each mode, so even different control strategies can be developed for each mode
- Linear tracking techniques are not adequate! We will rely on nonlinear control techniques of feedback linearization and sliding mode control (robustness?)

Linear Control ?

•Performance of a robust linear controller designed with parameter space methods

Aggressiveness is defined by:

- a. Amplitude of modal inputs
- b. Frequency of switching

Performance of the Linear controllers is limited by both "a" and "b" as seen in the example (Actuator Saturation was not taken into account in this example)

Linear control is not suitable for tracking of "non-trimmed" aggressive maneuvers

Aircraft Model for Control Purposes

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} c\theta^* c\psi & (-c\phi^* s\psi + s\phi^* s\theta^* c\psi) & (s\phi^* s\psi + c\phi^* s\theta^* c\psi) \\ c\theta^* s\psi & (c\phi^* c\psi + s\phi^* s\theta^* s\psi) & (-s\theta^* c\psi + c\phi^* s\theta^* s\psi) \\ -s\theta & s\phi^* s\theta & c\phi^* c\theta \end{bmatrix} \begin{bmatrix} U \\ V \\ W \end{bmatrix}$$

$$m \left\{ \begin{bmatrix} \dot{U} \\ \dot{V} \\ \dot{W} \end{bmatrix} + \begin{bmatrix} 0 & -R & Q \\ R & 0 & -P \\ -Q & P & 0 \end{bmatrix} \right\} = mg \left[\begin{array}{c} -\sin \theta \\ \cos \theta \sin \phi \\ \cos \theta \cos \phi \end{bmatrix} + \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

$$\begin{bmatrix} \dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & s\psi / c\theta & c\phi / c\theta \\ 0 & c\phi & -s\phi \\ 1 & s\phi^* t\theta & c\phi^* t\theta \end{bmatrix} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$
Aerodynamic data is usually provided in the tabular form so:
$$\dot{X} = f(X, U)$$

$$\begin{bmatrix} I \\ \dot{P} \\ \dot{R} \\ \dot{R} \end{bmatrix} + \begin{bmatrix} 0 & -R & Q \\ R & 0 & -P \\ -Q & P & 0 \end{bmatrix} \times \begin{bmatrix} I \\ Q \\ R \end{bmatrix} = \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix}$$

Approximating tables by polynomial functions of (AOA, sideslip and angular rates) and linear multipliers for true inputs (elevator, aileron rudder and thrust)

$$\dot{X} = f(X) + g(X)u$$

Example Hybrid Control Plan

C: Controller

$$C_1: \{V_T, x, y, z\} NMP$$
$$C_2: \{V_T, P, Q, R\} MP$$
$$C_3: \{V_T, \phi, \theta, \phi\} MP$$

Complete Low Level Controller Set

	Mode	State Constraints	Modal Inputs	Controller
q_0	Level Flight	$\dot{h}=0,\left(\dot{\phi},\dot{\theta},\dot{\psi}\right)=0$	V_T, α	C ₂
q_1	Climb/Descent	$\left(\dot{\phi},\dot{\theta},\dot{\psi}\right)=0$	V_T , (\dot{h}, θ_w)	C ₂
q_2	Roll	$(\dot{\theta}, \dot{\psi}) = 0$	$\int P_{w} dt$	<i>C</i> ₁
q_3	Longitudinal Loop	$\left(\dot{\phi},\dot{\psi}\right) = 0$	$r_{loop}, \dot{\theta}$	C_{1}, C_{3}
q_4	Lateral Loop	$\dot{h} = 0, (\dot{\phi}, \dot{\theta}) = 0$	$r_{loop}, \dot{\psi}$	C ₂
			V_T, P, Q, R	
q_5	3D Mode	{ }	$V_T, \phi_w, \theta_w, \psi_w$	$C_1 C_3, C_4$
q_6	Safety	{ }	{0,1}	<i>C</i> ₅

	Controlled Variables	Туре
<i>C</i> ₁	V_T, P, Q, R	MP
<i>C</i> ₂	$V_T, \phi_w, \theta_w, \psi_w$	NMP
<i>C</i> ₃	V_T, ϕ, θ, ψ	MP
<i>C</i> ₄	V_T, x, y, z	NMP
C_5	V_T , { $Quaternions$ }	MP

Subscript *w* Refers to "wind axes", this controller regulates the 3D orientation of the velocity vector

Two Problems with SMC

 q_0 Level Flight C_1 q_1 Roll C_2 q_2 Longitudinal Loop C_3

C: Controller

2. Discontinuous terms in control law results in chattering, which can be deadly for actuators

 $C_{1}: \{V_{T}, x, y, z\} NMP$ $C_{2}: \{V_{T}, P, Q, R\} MP$ $C_{3}: \{V_{T}, \phi, \theta, \phi\} MP$

 Avoid NMP outputs !! In these sets position variables are controlled, which results in unstable attitude dynamics. But altitude rate is a modal input, Therefore we must seek a way to stabilize internal dynamics for NMP outputs

• To separate NMP tracking from the input chattering problem faced at sliding mode control we develop a two loop architecture

• To stabilize rotational dynamics when tracking translational variables we can add integral terms to sliding manifold

 $s(x) = e + v + C\theta$

• Integral term provides robustness to matched uncertainties, and internal dynamics are stabilized by rotational feedback term

Higher Order Sliding Modes

- Chattering is an important problem in sliding mode control
- Dangerous for actuators
- HOSM keeps the constraint

 $s + \dot{s} = 0$

• With the following algorithm:

 $u(t) = -\lambda \sqrt{|s|} \operatorname{sign}(s) + u_1 \qquad \bullet$ $\dot{u}_1 = \begin{cases} -ku & |u| > u_0 \\ -W \operatorname{sign}(s) & |u| \le u_0 \end{cases}$

• Fast switching part is moved into derivative of input, therefore actuators are safe

• To separate NMP tracking from HOSM part we develop a two loop architecture

Simulations cont

- We have developed a nonlinear hybrid automata, which describe the dynamics of agile flight with dynamical constraints
- We have developed a mode based control algorithm which tracks the outputs of automaton by sliding control methods
- We now want to define agility metrics to measure the complexity and aggressiveness of maneuvers, we also seek ways to expand coordinated automata by adding coordinated and un-coordinated flight
- Now that we can identify and control maneuver sequences, current research focus on structure of these sequences and planning/synthesis maneuver sequences issues related with the described finite automata.
- Issues such as
 - Reachability : underlying control structure guarantees Lyapunov approach
 - Safe mode transitions : underlying control structure guarantees Lyapunov approach