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Motivation

Analysis and numerical solution of hybrid systems
described by differential-algebraic equations (DAEs)

Applications

. electronic circuits (different device models for different frequencies),
cooperation with NEC

. mechanical systems (robot manipulators, automatic gear-boxes),
cooperation with Daimler AG

. systems from biological or chemical engineering,

. traffic systems, which operate different depending on delays.



Hybrid DAE Systems
Definition
A hybrid DAE system is a set of nonlinear DAEs

F l(t , x l , ẋ l) = 0, F l : Dl × Rnl × Rnl → Rml , l ∈ M,

with sufficiently smooth functions F l for each mode in Dl =
S

i [αi , βi), where
. each mode l has a number of transitions j ∈ J l , with switching functions

g l
j (t , x l , ẋ l) ≥ 0,

. the successor mode k is determined by the mode allocation function

Sl : J l → M, such that Sl(j) = k ,

. and each transition j has a transition function

T l
j (x

l(βi)) = xk (αi+1), βi = αi+1.

In general, also controls ul , outputs y l , parameters p, and uncertainties w
in each mode. In this talk only analysis and numerics!



A Simple Example

Tangentially accelerated pendulum

mẍ = −2xλ + Fx

mÿ = −2yλ−mg + Fy (mode 1)

0 = x2 + y2 − l2

mẍ = 0 (mode 2)
mÿ = −mg

J1 = {1}, S1(1) = 2, g1
1 = Fc−ẋ2−ẏ2

T 1
1 (x , y , λ) = [x , y ]T at t = β1 = α2.



Why DAEs ?

DAEs form a common framework for analysis, simulation and control of
coupled dynamical systems.
. Automatic modular modelling (Simulink/Modellica) leads to DAEs.
. Space discretized conservation laws lead to DAEs.
. Simulator coupling leads to discrete DAEs.
. Control problems are DAEs.
. Robust/optimal control leads to DAE boundary value problems.



Classical approach

Solve for algebraic equations (minimal coordinates).
Problems:
. Variables without physical meaning.
. Loss of modularity.
. Numerical solution drifts off constraints after a few time steps.



Black-box modelling with DAEs

Modelling becomes easy, all problems are pushed into the numerics. The
numerical methods cannot handle this!
Problems:

. Numerical simulation does not allways work, stability and convergence
problems (e.g. Simulink) !

. Consistent initialization difficult.

. The resulting nonlinear system may be unsolvable even if the DAE is
solvable, (see later example).

. Numerical drift-off phenomenon due to unresolved hidden constraints.

. Model reduction difficult.

. Classical control approaches difficult (non-proper transfer functions).

Today several packages use computer algebra (Modellica, Dymola) to turn
back to ODE.



What do we do?

. Component- and network-based remodelling.

. Strangeness-free (index 1 formulation) keeping all open and hidden
constraints, interfaces, and all variables.

. Strangeness-free formulation of control problems, continuous, discrete and
hybrid.

. Black-box-software GELDA, GENDA for small systems.

. Special software for automatic MBS GEOMS.

. Special software for circuits.

. H∞-controller design, model reduction, optimal control for strangeness-free
models.



Linear DAEs with constant coefficients

Eẋ = Ax + f (t), t ∈ I,

where E , A ∈ Cl,n and f ∈ C(I, Cl).
Consider scaling from the left and changes of basis with nonsingular matrices.

PEQ ˙̃x = PAQx̃ + Pf (t), x̃(t0) = x̃0.

Definition
Two pairs of matrices (Ei , Ai), i = 1, 2, are called (strongly) equivalent if there
exist invertible matrices P ∈ Cl,l , Q ∈ Cn,n with E2 = PE1Q, A2 = PA1Q.



Kronecker canonical form (KCF)

Theorem
Weierstraß/Kronecker 1890-1896 For every pair E , A ∈ Cl,n there exist
nonsingular P ∈ Cl,l , Q ∈ Cn,n such that
P(λE − A)Q = Diag (Lε1 , . . . , Lεp , Mη1 , . . . , Mηq , Jρ1 , . . . , Jρv , Nσ1 , . . . , Nσw ),

Jρj = λ
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Regularity and index

Definition

. A matrix pencil λE − A, E , A ∈ C`,n, is called regular if ` = n and if

P(λ) = det(λE − A)

does not vanish identically, otherwise singular.
. The size νd of the largest nilpotent (N)-blocks in the KCF is called the

differentiation-index of λE − A.

Theorem
Campbell 1982 Consider a linear constant coefficient system with regular
λE − A and let f ∈ Cνd (I, Cn).
Then the system is solvable and every consistent initial condition fixes a
unique solution.



Linear systems with variable coefficients

E(t)ẋ(t) = A(t)x(t) + f (t), x(t0) = x0, t , t0 ∈ I.

Scaling from the left and changes of basis with nonsingular matrix functions.

P(t)E(t)Q(t) ˙̃x = (P(t)A(t)Q(t)− P(t)E(t)Q̇(t))x̃ + P(t)f (t), x̃(t0) = x̃0.

Definition
Two pairs of matrix functions (Ei(t), Ai(t)) in Cl,n are called globally equivalent
if there exist P ∈ C(I, Cl,l) and Q ∈ C1(I, Cn,n), P(t), Q(t) nonsingular for all
t ∈ I such that

[E2(t), A2(t)] = P(t)[E1(t), A1(t)]
[

Q(t) −Q̇(t)
0 Q(t)

]
.

Regularity of the pencil at time t and the d-index at time t are not
invariants under global equivalence.



Example 1

A system that is uniformly regular but not uniquely solvable. The system[
−t t2

−1 t

]
ẋ(t) =

[
−1 0
0 −1

]
x(t), t ∈ R

is uniformly regular and of uniform d-index νd = 2 but

x(t) = c(t)
[

t
1

]
is a solution for all c ∈ C1(R, C).



Example 2

A system that is uniformly singular but uniquely solvable. The system[
0 0
1 −t

]
ẋ(t) =

[
−1 t
0 0

]
x(t) +

[
f1(t)
f2(t)

]
,

is uniformly singular, because the pencil is singular for all t .
But the system has the unique solution[

f1 + tf2 − tf1
f2 − ḟ1

]
independent of any initial condition.



Local version of global equivalence

Definition
Two pairs of matrices

(Ei , Ai), Ei , Ai ∈ Rl,n, i = 1, 2

are called locally equivalent if there exist matrices P ∈ Cl,l , Q, R ∈ Cn,n with
P, Q nonsingular such that

[E2, A2] = P[E1, A1]

[
Q −R
0 Q

]
.

By Hermite interpolation there always exists a function Q(t) such that at any
point t̂ one has Q(̂t) = Q and Q̇(̂t) = R.



Local canonical form I

Theorem
Kunkel/M. 1994 Let E , A ∈ Cl,n and

(a) T basis of kernel E
(b) Z basis of Co-range E = kernel E∗

(c) T ′ basis of Co-kernel E = kernel E∗

(d) V basis of Co-range (Z ∗AT ).

Then, the quantities (convention rank ∅ = 0)

(a) r = rank E (rank)
(b) a = rank (Z ∗AT ) (algebraic part)
(c) s = rank (V ∗Z ∗AT ′) (strangeness)
(d) d = r − s (differential part)
(e) v = l − r − a− s (redundant part)

are invariant under the local equivalence transformation.



Local canonical form II

Furthermore, (E , A) is locally equivalent to the canonical form:

s
d
a
s
v




Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 Ia 0
Is 0 0 0
0 0 0 0


 .

Note: Eigenvalues are not invariants of this normal form.



Global canonical form

Applying the local canonical form for all t we get functions

r , a, s : I → {0, . . . , l}.

Theorem
Kunkel/M. 1994 Let E , A be sufficiently smooth and let r , a, s be constant in I.
Then (E(t), A(t)) is globally equivalent to a pair of matrix functions of the form

s
d
a
s
v




Is 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 A12(t) 0 A14(t)
0 0 0 A24(t)
0 0 Ia 0
Is 0 0 0
0 0 0 0


 .



More equivalence transformations

(a) ẋ1 = A12(t)x2 + A14(t)x4 + g1(t)
(b) ẋ2 = A24(t)x4 + g2(t)
(c) 0 = x3 + g3(t)
(d) 0 = x1 + g4(t)
(e) 0 = g5(t).

Insert the derivative of (d) in (a), which becomes an algebraic equation. This
gives

s
d
a
s
v




0 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 A12(t) 0 A14(t)
0 0 0 A24(t)
0 0 Ia 0
Is 0 0 0
0 0 0 0


 ,

for which we can again compute characteristic values r , a, s, d , v .



Inductive procedure

Proceeding inductively we get a sequence of pairs of matrix functions
(Ei(t), Ai(t)) and integers ri , ai , si , di , vi , i ∈ N0, which we assume to be
constant in I.
We start with (E0(t), A0(t)) = (E(t), A(t)), and then (Ei+1(t), Ai+1(t)) is derived
from (Ei(t), Ai(t)) by bringing it into canonical form and inserting the derivative
of (d) into (a). The procedure stops after finitely many steps.

Definition
The number µ of steps is called the strangeness-index or s-index µ. If µ = 0,
then the system is called strangeness-free.



Global canonical form

Theorem
Kunkel/M. 1994 Let the s-index µ be well–defined for (E(t), A(t)) and let
f ∈ Cµ(I, Cl). Then the system is equivalent to a DAE in normal form

ẋ1(t) = A13(t)x3(t) + f1(t), dµ equations,
0 = x2(t) + f2(t), aµ equations,
0 = f3(t), vµ equations,

where the inhomogeneity is determined by f (0), . . . , f (µ).

. The problem is solvable if and only if f3(t) ≡ 0.

. An initial condition is consistent if and only if in addition x2(t0) = −f2(t0)
holds.

. The problem is uniquely solvable if again in addition we have
uµ = n − dµ − aµ = 0.

. Otherwise, we can choose x3 ∈ C(I, Cuµ) arbitrarily (control).



Evaluation of the algebraic approach

What do we learn from the canonical form

. The algebraic approach is essential for the theoretical understanding of
DAEs, in particular in the hybrid setting.

. The approach allows to do bifurcation analysis.

. The points where ranks change are a superset of the set of critical or
switching points.

. But, it cannot be used for numerical methods or the design of controllers,
since one would need derivatives of computed transformation matrices.

. Numerical computation even in the strangeness-free case is very expensive.



Numerical methods: Classical approach

Replacing ẋ in F(t , x , ẋ) = 0 by finite difference operators like implicit
Euler or BDF in general does not work!
. The resulting system of nonlinear equations may not be solvable, even if the

system has a unique solution. (Example 2).
. The convergence order of the finite difference method may be reduced by

up to µ orders.
. The finite difference method may diverge.
. Even if all goes well, the numerical solution drifts off from the hidden

constraints, i.e., one gets physically meaningless results.
. The approach cannot be applied for control problems.



Derivative arrays

For numerical methods and for the design of controllers, we use derivative
arrays (Campbell 1989).
We assume that derivatives of original functions are available or can be
obtained via computer algebra or automatic differentiation.

Linear case: We put E(t)ẋ = A(t)x + f (t) and its derivatives up to order µ into
a large DAE

Mk (t)żk = Nk (t)zk + gk (t), k ∈ N0

for zk = (x , ẋ , . . . , x (k)).

M2 =

 E 0 0
A− Ė E 0
Ȧ− 2Ë A− Ė E

 , N2 =

 A 0 0
Ȧ 0 0
Ä 0 0

 , z2 =

 x
ẋ
ẍ

 .



Numerically construction of canonical form

Theorem
Kunkel/M. 1996 Under some constant rank assumptions, for every linear DAE
there exist integers µ, a, d and v such that from the derivative array of level µ
we obtain (via orthogonal projection) a numerically computable
strangeness-free form

Ê1(t)ẋ = Â1(t)x + f̂1(t), d equations
0 = Â2(t)x + f̂2(t), a equations
0 = f̂3(t), v equations

where Â1 = Z T
1 A, f̂1 = Z T

1 f , and f̂2 = Z T
2 gµ, f̂3 = Z T

3 gµ.
The partitioning is the same as in the canonical form

ẋ1(t) = A13(t)x3(t) + f1(t), d equations
0 = x2(t) + f2(t), a equations
0 = f3(t), v equations.



Derivative arrays, nonlinear problems

Analogous approach for F (t , x , ẋ) = 0 yields derivative array:

0 = Fk (t , x , ẋ , . . . , x (k+1)) =


F (t , x , ẋ)

d
dt F (t , x , ẋ)

. . .
dk

dtk F (t , x , ẋ)

 .

We set

Mk (t , x , ẋ , . . . , x (k+1)) = Fk ;ẋ,...,x (k+1)(t , x , ẋ , . . . , x (k+1)),

Nk (t , x , ẋ , . . . , x (k+1)) = −(Fk ;x(t , x , ẋ , . . . , x (k+1)), 0, . . . , 0),

zk = (t , x , ẋ , . . . , x (k+1)).



Nonlinear local canonical form

Theorem
Kunkel/M. 2002 Under some constant rank assumptions and if
L = F−1

µ ({0}) 6= ∅, then there exist locally integers µ, a, d and v such that for
the derivative array of level µ we have that the solution set L forms a (smooth)
manifold of dimension (µ + 2)n + 1− r .
The DAE can locally be transformed (by application of the implicit function
theorem) to a reduced DAE of the form

ẋ1 = G1(t , x1, x3), (d differential equations),
x2 = G2(t , x1, x3), (a algebraic equations),
0 = 0 (v redundant equations).

The variables x3 represent undetermined components (controls).



General numerical procedure

. Consistent initial values are obtained by solving Fµ(t0, x , ẋ , . . . , x (µ+1)) = 0
at t0 for the algebraic variable (x , ẋ , . . . , x (µ+1)).

. For the integration of the DAE, e.g. with BDF methods, the system

Fµ(t0 + h, x , ẋ , . . . , x (µ+1)) = 0,

Z̃ T
1 F (t0 + h, x , Dhx) = 0

is solved for (x , ẋ , . . . , x (µ+1)).
. Here, Z̃1 denotes a suitable approximation of Z1 which projects onto the d

differential equations at the desired solution, and

Dhxi =
1
h

k∑
l=0

αlxi−l ,

is the discretization by BDF.



Analysis of numerical method

Theorem
Kunkel/M. 2002 Under the assumtions of the local existence theorem, the
occurring Jacobians of the system have full row rank at the solution provided
the step-size h is sufficiently small and the approximation Z̃1 is sufficiently
good.

. Simplified Gauss-Newton method can be used to solve the nonlinear
systems at every integration step.

. The order and convergence properties are the same as for ODEs.

. The method can be implemented by using local orthogonal projections.

. However, the projections may be expensive.



Numerical Software

Several productions codes are available.

. Production code GELDA Kunkel/M./Rath/Weickert 1998 (linear variable
coefficients), uses BDF and Runge-Kutta discretization.

. Production code GENDA (nonlinear regular), Kunkel/M./Seufer 2002 based
on BDF.

. Matlab code SOLVEDAE (nonlinear), Kunkel/Mehrmann/Seidel 2005.

. Special multi-body code GEOMS Steinbrecher 2006.

. Circuit codes, joint with NEC, Bächle, Ebert, 2006.



Theory for Hybrid DAE Systems

Recall hybrid DAE systems

F l(t , x l , ẋ l) = 0, F l : Dl × Rnl × Rnl → Rml , l ∈ M,

with sufficiently smooth functions F l for each mode in Dl =
S

i [αi , βi), where
. each mode l has a number of transitions j ∈ J l , with switching functions

g l
j (t , x l , ẋ l) ≥ 0,

. the successor mode k is determined by the mode allocation function

Sl : J l → M, such that Sl(j) = k ,

. and each transition j has a transition function

T l
j (x

l(βi)) = xk (αi+1), βi = αi+1.



Transition Behavior at Switch Points

The switching functions define transition boundaries Γl
j = {g l

j (t , x l , ẋ l) = 0}.

Behavior at transition boundary:
. regular switching,
. non-regular switching,
. chattering

=⇒ sliding modes.

mode 1
mode 3

mode 2

x
1

x
2

x
3

g
2

= 0

g
3

= 0

g
1

= 0

After a switch
. there could be changes in the dimension, structure, index or characteristic

values,
. the state has to be transferred to the new mode in a consistent way

(consistent reinitialization).



The pendulum again

Tangentially accelerated pendulum:

mẍ = −2xλ + Fx

mÿ = −2yλ−mg + Fy (mode 1)

0 = x2 + y2 − l2

mẍ = 0 (mode 2)
mÿ = −mg

J1 = {1}, S1(1) = 2, g1
1 =

Fc − (ẋ2 + ẏ2) T 1
1 (x , y , λ) = [x , y ]T at

β1 = α2.

In Mode 1 we have µ = 2, d = 2, a = 1, in Mode 2 we have µ = 0, d = 3,
a = 0.



Index Reduction for hybrid DAEs

For the index reduction we use the nonlinear derivative arrays in each mode:
. The derivative array F l

k of level k in mode l ∈ M is given by

0 = F l
k (t , x l , ẋ l , . . . , x l(k+1)) =


F l(t , x l , ẋ l)

d
dt F

l(t , x l , ẋ l)
...

dk

dtk F l(t , x l , ẋ l)

 .

. We set

Mk (t , x l , ẋ l , . . . , x l(k+1)) = F l
k ;ẋ l ,...,x l(k+1)(t , x l , ẋ l , . . . , x l(k+1)),

Nk (t , x l , ẋ l , . . . , x l(k+1)) = −(F l
k ;x l (t , x l , ẋ l , . . . , x l(k+1)), 0, . . . , 0),

z l
k = (t , x l , ẋ l , . . . , x l(k+1)).



Index Reduction for hybrid DAEs

Under some constant rank assumptions, locally we get integers µl , rl , al , dl and
vl and we assume that the solution set

Ll
µl

= {(t , x l , . . . , x l(µl+1)) ∈ R(µl+2)nl+1| F l
µl

(t , x l , . . . , x l(µl+1)) = 0}

is not empty .

Definition
For a hybrid DAE system the maximal strangeness index µmax is defined as

µmax = max
l∈M

{µl}.

A hybrid DAE system is called strangeness-free if µmax = 0.

The extracted (strangeness-free) problem is given by

F̂ l(t , x l , ẋ l) =

[
F̂ l

1(t , x l , ẋ l)

F̂ l
2(t , x l)

]
=

[
(Z l

1)
T F l(t , x l , ẋ l)

F l
µl

(t , x l , . . . , x l(µ1+1))

]
= 0.



Consitent reinitialization

. We obtain information about the constraint manifold in each mode.

. Thus, consistent initial values can be obtained by solving the system

F l
µl

(αi , x l , ẋ l , . . . , x l(µl+1)) = 0

at the switch point αi for (x l , ẋ l , . . . , x l(µl+1)).
. We use the Gauß-Newton method started with a sufficiently good initial

guess (x̃ l , . . . , x̃ l(µl+1)) to solve this system in a least square sense.
. As the Jacobians have full row rank, we have local quadratic convergence.
. We can fix arbitrary initial values for the differential variables, whereas initial

values for the algebraic variables have to be computed consistently.



Sliding Mode Simulation

Chattering behavior can be
approximated by sliding motion.

g=0

. We locally compute reduced systems

ẋ l
1 = Ll(t , x l

1), ẋk
1 = Lk (t , xk

1 ),

x l
2 = Rl(t , x l

1), xk
2 = Rk (t , xk

1 ),

. the DAE in sliding motion is (dl = dk !)

ẋ1 = αLl(t , x1) + (1 − α)Lk (t , x1),

x2 = R̃(t , x1),

0 = g(t , x1, x2).

g=0

The system is augmented with appropriate algebraic constraints x2 = R̃(t , x1)
to force the solution onto a specific constraint manifold.



The Sliding Condition

. The sliding condition is given by

〈 ∂

∂x l
1

g l
j (t , x l

1, x l
2),Ll

Γ(t , x l
1)〉| {z }

Ll
N

< 0 and 〈 ∂

∂xk
1

gk
j̃ (t , xk

1 , xk
2 ),Lk

Γ(t , xk
1 )〉| {z }

Lk
N

> 0.

. The normal projections onto the switching surface can be approximated by

Ll
N ≈ 1

δ
g l

j (t , x l
1 + δLl(t , x l

1), x l
2), Lk

N ≈ 1
δ

gk
j̃ (t , x l

1 + δLk (t , xk
1 ), xk

2 ).

1. If Ll
N > 0 and Lk

N > 0, the system
switches from mode l to mode k .

2. If Ll
N < 0 and Lk

N < 0, the system
switches from mode k to mode l .

3. If Ll
N < 0 and Lk

N > 0, the sliding
condition is satisfied.

4. If Ll
N > 0 and Lk

N < 0, inconsistent
switching.

g = 0

g = 0

g = 0

g = 0



Numerical Integration of hybrid DAEs

. For the numerical integration of the DAE in mode l ∈ M from ti−1 to
ti = ti−1 + h solve the nonlinear system

F l
µl

(ti , x l
i , ẋ l

i , . . . , x l(µl+1)
i ) = 0,

Z̃ T
1 F l(ti , x l

i , Dhx l
i ) = 0

for (x l
i , ẋ l

i , . . . , x l(µl+1)
i ), where Z̃1 denotes an approximation of Z1.

. The differential operator Dh denotes a BDF or Runge-Kutta method.

. The event time t? is determined with a modified secant method as the root
of the switching function, i.e.

g l
j (t

?, x l(t?), ẋ l(t?)) = 0, for some j ∈ J l .

. The solution of the system at a switch point x l(t?) as well as ẋ l(t?) are
determined by interpolation (using the collocation polynomials):
I for s-stage Runge-Kutta methods the interpolant has order s (s − 1),
I for BDF methods of order k the interpolant has order k (k − 1).



Embedded DAE Solvers

We have embedded several DAE solvers in a hybrid code.
. the code GELDA (Kunkel/Mehrmann/Rath/Weikert 1998) for over- and

underdetermined linear variable coefficients DAEs (uses BDF and
Runge-Kutta discretization),

. the code GENDA (Kunkel/Mehrmann/Seufert 2002) for general nonlinear
DAEs (uses BDF discretization).

Additionally the following codes are currently incorporated.
. the special multibody code GEOMS (Steinbrecher 2006) based on

Runge-Kutta methods,
. electrical circuit codes,



Hybrid Mode Controller

Compute consistent
 initial values.

Compute the reduced system,
compute characteristic values.

Localize switch point 
as root of a switching function.

Switch to sliding mode.

Transfer state Tl
j
(xl(t*))=xk(t*).

Set current mode l:=k.
Reset the integration routine.

Are the initial 
values  

consistent?

Integrate reduced system 
using BDF or Runge-Kutta methods.

Is a transition condition 
satisfied?

No

Integration of the DAE in  mode l:

Determine state xl(t*) by interpolation.

Is the sliding condition 
satisfied?

Determine successor 
mode Sl(j)=k.

DAE Solver
(GENDA, GELDA)

   Yes

No

   Yes

   Yes No

t=t+h

t=t*



A simple numerical Example

m1ẍ1 = f1 − µ|N|sgn(ẋ1 − ẋ2),
m2ẍ2 = f2 + µ|N|sgn(ẋ1 − ẋ2).

ff
mode 1(2): vrel > (<)0

m1ẍ1 = f1 + λ− µ|N|,
m2ẍ2 = f2 − λ + µ|N|,

0 = ẋ1 − ẋ2.

9=; (sliding mode, vrel ≈ 0)

Solved with GELDA with m1 = m2 = 1, f1 = sin(t), f2 = 0, |N| = 1, µ = 0.4, vc = 0.007,
initial values [x1,0, x2,0, ẋ1,0, ẋ2,0] = [1, 1, 0, 0] and RTOL = ATOL = 10−4, I = [0, 10].

1. Solved without sliding.

2. Solved with sliding mode.

No. steps Switch points
1 4833 368
2 2709 89



New automatic gearbox Daimler AG

The model has in each mode the form of a mechanical multibody system

ṗ = v
Rv̇ = f (p, v)− gT

p (p)λ

0 = g(p)

and has between 70 and 100 variables in the different modes. Chattering
occurs if the freewheels are included.



Simulation with hybrid GELDA/BDF.
Comparison with Daimler in-house solver ASIM.
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Summary and Current work

Done
. Modelling and analysis of hybrid DAE systems.
. Index reduction for hybrid systems.
. Consistent re-initialization after switching.
. Numerical treatment of chattering behavior. (Sliding modes).
To Do

. Use of specific structures to make the approach efficient (reduced derivative
arrays, minimal extension).

. Incorporation of further DAE solvers (specially adapted for multibody
systems, circuit equations, ...)

. Feedback control of hybrid systems

. Optimal and robust control.



Thank you for your attention!
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