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Motivation: Switched systems

Dynamic processes with discrete (time–dependent) decisions.
Often multi-scale modeling of fast transient behavior.

I Valves (open or closed)

I Gears or disjoint operation modes

I On-off devices (engines, generators, ...)
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Problem class

I Optimal control problem arising from a complex dynamic
process, e.g., in engineering, economics, cell biology, . . .

min
x,u,p,tf

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), u(t), p),
0 ≤ c(t, x(t), u(t), p),

0 ≤ ri(x(t0), . . . , x(tf ), p),
0 = re(x(t0), . . . , x(tf ), p)

I x(·) differential states, u(·) control functions
I Minor importance in this talk: p time-independent controls
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Problem class

I Optimal control problem arising from a complex dynamic
process, e.g., in engineering, economics, cell biology, . . .

min
x,ω,u,p,tf

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), ω(t), u(t), p),
0 ≤ c(t, x(t), ω(t), u(t), p),

0 ≤ ri(x(t0), . . . , x(tf ), p),
0 = re(x(t0), . . . , x(tf ), p),

ω(t) ∈ Ω := {ω1, ω2, . . . , ωnw} , t ∈ [t0, tf ].

I Additional controls ω(t) from finite set ωi ∈ Ω ⊆ Rnω .
I Ex. 1: ω1 = (i1T , η1

T)T , Ex. 2: ω1 = (0, 0, 1)T , ω2 = (0, 1, 1)T
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Direct methods for optimal control

min
x,u,p

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), u(t), p),
0 ≤ c(t, x(t), u(t), p),

0 ≤ ri(x(t0), . . . , x(tf ), p),
0 = re(x(t0), . . . , x(tf ), p)

I Consider the infinite
dimensional optimization
problem

I Apply Direct Multiple Shooting
[Bock et al. 1981 ff.]

min
α

F(α)

s.t. 0 = G(α),
0 ≤ H(α)
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Overview: Optimal Control Family Tree
((((((((((((((((((((

����������
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�

��
Hamilton-Jacobi-

Bellman Equation:
Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)
((((((((((((((((((((

����������

�
�

��

Single Shooting:
Only discretized
controls in NLP

(sequential)

Collocation:
Discretized controls
and states in NLP

(simultaneous)

Multiple Shooting:
Controls and node
start values in NLP

(simultaneous/hybrid)
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Direct Single Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = tf .

6

x0r states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p
0 t

p
tf

Regard states x(t) on [t0, tf ] as dependent variables.
Use numerical integration to obtain state as function x(t; q, x0) of
finitely many control parameters q = (q0, q1, . . . , qN−1) and the
initial value x0.
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Direct Multiple Shooting [Bock et al. 1981 ff.]

r r r r r
s0 s1

si
si+1

xi(si, qi, p, h) 6= sx
i+1

@
@R r r r r r

6

qi

-q q0 q q q q q q

r sN−1

q

r sN

Main idea: Decouple intervals and add extra
continuity constraints.
Denote each interval’s variables by wi := (sx

i , sz
i , qi).

Summarize all in large vector w := (w0, . . . , wN).
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NLP in Direct Multiple Shooting

p p p p p p p p p p6

-p p p p p p p
p

p
p

min
w

N∑
i=0

φi(wi) s.t.


sx

i+1 − xi(wi) = 0 (continuity)
gi(wi) = 0 (algebraic consistency)
ci(wi) ≥ 0 (path constraints)∑N

i=0 ri(wi) ≥ 0 (multipoint inequality constraints)∑N
i=0 re(wi) ≥ 0 (multipoint equality constraints)
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Summary
Bock’s Direct Multiple Shooting method [Bock et al. 1981 ff.]

I is simultaneous optimal control method
I uses adaptive integrators, but NLP has fixed dimensions
I can treat nonlinear and unstable systems

with state constraints
I can use knowledge of x in initialization (e.g., in tracking

problems), impact on convergence region of Newton type
method.

I easy to parallelize
I NLP structure exploited by high rank updates,

partial reduction technique, condensing, ...
I Replaces Checkpointing in Adjoint Calculation

I Implemented in modular software package MUSCOD-II
[Leineweber, Schäfer, Diehl, Sager, Potschka, Kirches, Albersmeyer, Wirsching, Hoffmann, ... ]
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Back to the point

Important for the following:
I Direct approach: finitely many optimization variables
I Can calculate functions and derivatives
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MINLP approach to solve MIOCPs

min
x,ω,u,p

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), ω(t), u(t), p), t ∈ [t0, tf ],
0 ≤ c(t, x(t), ω(t), u(t), p),

0 ≤ ri(x(t0), . . . , x(tf ), p),
0 = re(x(t0), . . . , x(tf ), p),

ω(t) ∈ Ω.

I Consider the infinite
dimensional problem

I Direct Multiple Shooting

I Let variables inherit
integer constraint

min
α,β

F(α, β)

s.t. 0 = G(α, β)
0 ≤ H(α, β)
βi ∈ Ω, i = 1..N
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Mixed–integer Nonlinear Program

min
α,β

F(α, β)

s.t. 0 = G(α, β),
0 ≤ H(α, β),
βi ∈ Ω, i = 1..N

I Obtain a Mixed–integer Nonlinear Program (MINLP)

I Apply generic algorithms as Nonlinear Branch & Bound,
Outer Approximation, . . .
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Mixed–integer Nonlinear Programming

I Apply generic algorithms as Nonlinear Branch & Bound,
Outer Approximation, . . .

I Active field of research
I Biegler, Bonami, Grossmann, Wächter, . . . (Bonmin)
I Leyffer, Linderoth, . . . (FilMint)
I . . .

I But: very costly, can’t we avoid enumeration?
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Switching time optimization
Take given switching
order with piecewise
fixed controls ω(·), op-
timize interval lengths
(after standard time
transformation)

-

6

t

wk(t)

0

1

t0

h0-�

t̃1 t̃2

h1-� h2 -�

t̃3 t̃4

h3-�

tf

h4 -�

min
x,ω,u,p

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), ω(t), u(t), p), t ∈ [t0, tf ]

min
x,h,u,p

φ(tf , x(tf ), p)

s.t. ẋ(t) = f (t, x(t), ωij , u(t), p), t ∈ [̃tj, t̃j+1]
. . .
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Switching time optimization

Fixed switching struc-
ture with fixed con-
trols, optimize contin-
uous interval lengths
(after standard time
transformation)

-

6

t

wk(t)

0

1

t0

h0-�

t̃1 t̃2

h1-� h2 -�

t̃3 t̃4

h3-�

tf

h4 -�

Concept old and well known:

I Indirect approaches, switching function to determine t̃i
I Hybrid systems, switching function to determine

phase transitions
I Multi-stage processes: batch processes
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Switching Time Optimization

Advantage:
I Only continuous variables → very fast

Disadvantages:

I Still discrete decision (switching structure)
I Numerical stability when stage lengths become zero
I No measure for quality of solution
I Initialization is crucial, many local minima
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Example

-
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t

wk(t)
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q06?
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tf

q2
6

?
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h2 -�
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Novel idea: Outer convexification

Reformulate nonlinear problem such that

I The relaxed problem has bang-bang solutions,
no need to enumerate!

If this is not the case, then

I Obtain best lower bound from purely continuous problem

I Obtain an integer solution by adaptivity and rounding strategy

I Refine solution using switching time optimization
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Relaxation and Outer Convexification
Problem (B) resp. (R)

Problem (BC) resp. (RC)

min
x,ω,u,p

φ(tf , x(tf ), p)

min
x,w,u,p

φ(tf , x(tf ), p)

subject to

x(t0) = x0

ω(·) ∈ Ω resp. conv Ω

ẋ(t) = f (x(t), ω(t), u(t), p)

subject to

x(t0) = x0

w(·) ∈ {0, 1}nw resp. [0, 1]nw

ẋ(t) =

nwX
i=1

f (x(t), ωi, u(t), p) wi(t)

nwX
i=1

wi(t) = 1, t ∈ [t0, tf ]

Often φR � φB. Better bound?

Bijection between binary solutions, φB = φBC.
What can we say about relation between φRC and φBC???
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Approximating the state [S., Bock, Diehl, 2008]

THEOREM. Let x(·) and y(·) be solutions of the initial value
problems

ẋ = A(x) w, x(0) = x0,

ẏ = A(y) v, y(0) = y0

with t ∈ [0, tf ]. If for all t ∈ [0, tf ] it holds that

‖ w ‖ ≤ 1, ‖ v ‖ ≤ 1,

‖ A(x) ‖ ≤ M ∀ x ∈ Rnx ,

‖ A(y)− A(x) ‖ ≤ L ‖ y− x ‖ ∀ x, y ∈ Rnx ,∥∥∥∥ ∫ t

0
v(τ)− w(τ) dτ

∥∥∥∥ ≤ ε

then for all t ∈ [0, tf ] it holds

‖ y(t)− x(t) ‖ ≤ (2Mε + ‖ y0 − x0 ‖) eLt.
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Sum Up Rounding

For ∆ti = ti+1 − ti and all j = 1 . . . nw, i = 1 . . . nint set

pj,i =

{
1 if

∑i
k=0 qj,k∆tk −

∑i−1
k=0 pj,k∆tk ≥ 0.5∆ti

0 else
.
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Approximating the control [S., Bock, Diehl, 2008]

THEOREM. Let functions v : [0, tf ] 7→ [0, 1]nw ,

vj(t) = qj,i, t ∈ [ti, ti+1]

and w : [0, tf ] 7→ {0, 1}nw ,

wj(t) = pj,i, t ∈ [ti, ti+1]

pj,i =

{
1 if

∑i
k=0 qj,k∆tk −

∑i−1
k=0 pj,k∆tk ≥ 0.5∆ti

0 else
.

be given. Then it holds∥∥∥∥ ∫ t

0
v(τ)− w(τ) dτ

∥∥∥∥ ≤ 0.5 max
i

∆ti
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Implications

I ∀ε : If grid fine enough → φRC ≤ φBC + ε = φB + ε

I Extension to path constraints straightforward,
as functions continuous in states x(·)

I Sum Up Rounding constructive way to get integer solution

I At the price of more control functions, we can
calculate φB by solution of purely continuous problem!

I Note: if control constraints depend explicitely on w(·),
problem specific analysis! [Kawajiri, Biegler, S., SMB: in progress]
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MS MINTOC algorithm

I k = 0. Provide initial control discretization grid Gk.
I Convexify problem (B). Relax this problem to w̃(·) ∈ [0, 1]nw .
I REPEAT

I Solve relaxed problem for control discretization Gk, obtain
the grid–dependent optimal value φRC

Gk of the trajectory T k.
I If the optimal trajectory on Gk is bang-bang then STOP.
I Apply Sum Up Rounding to T k.
I Use switching time optimization, initialized with this

solution. Obtain upper bound φSTO.
I If feasible and φSTO < φRC + ε then STOP.
I Refine the control grid Gk, based on control values of

trajectory T k. k = k + 1.
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Testdrive benchmark problem

Branch & Bound MS Mintoc
N tf CPU Time tf CPU Time

20 6.779751 00:23:52 6.779035 00:00:24
40 6.786781 232:25:31 6.786730 00:00:46
80 – – 6.789513 00:04:19

N = # discretization intervals ≈ # integer variables
CPU times in [hh:min:sec]

Left: Gerdts, Optimal Control Applications and Methods, 2005,
CPU times for Pentium III machine with 750 MHz

Right: Kirches, S., Schlöder, Bock, submitted,
AMD Athlon XP 3000+ with 2.166 GHz and 1024 MB of RAM
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Applications I

Valves and ports
I SMB superstructure [S., Engell et. al., 2007], [Kawajiri, Biegler, S., ?]

I Slop cut recycling in batch distillation [S., Diehl, Bock, 2005]

I For the first time considering variable reflux to single trays
I 23% more profit compared to solution in the literature

Yes/no decisions in biological systems
I Determination of phase resetting stimuli in calcium

signalling pathway [Lebiedz, S. et. al., 2005]

I Manipulating circadian rhythms by light stimuli
[Shaik, S. et. al, 2008]

I Benchmark population dynamics problem
[S., Schlöder et al., 2006]
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Applications II

Gears in transport
I New York subway control problem [S., Bock, Reinelt, 2008]

I For the first time considering path constraints
I Gear choice in heavy duty trucks [ongoing thesis C. Kirches]

I Feedback control, using available GPS data, 16 gears

I Benchmark problem MINLP: automobile testdriving
[Gerdts, 05/06], [Kirches, S., et al., submitted]

I Periodic time-optimal automobile driving,
[S., Kirches, et al., submitted]
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Conclusions

I Use outer convexification for modeling!!!
I Do not use standard MINLP methods,

but Sum Up Rounding and Switching Time Optimization
for integer control functions

I Many problems solvable for the first time
(or orders of magnitude faster)

I Allows to use more detailed models
I Real-time capable computing times!
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Thank you very much for your attention!

Questions?
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Example

m ∆t
R 12

0 v− w xR
2 (12) xB

2 (12) xSTO
2 (12)

2 6 2.87924 5.40278 8.51376 7.05533
4 3 0.631402 2.75402 5.08501 2.49896
8 1.5 0.585463 1.46812 1.90096 1.38276

16 0.75 0.0827811 1.35597 1.73284 1.38276
32 0.375 0.00718493 1.34881 1.61399 1.34972
64 0.1875 0.00151131 1.34406 1.34680 1.34569

128 0.09375 0.00135644 1.34405 1.34511 1.34479
256 0.046875 0.00130135 1.34402 1.34430 1.34424

I Here: bisection for illustrative purposes, in practice more
advanced adaptivity strategies

I Integer solution for m = 256 switches 30 times!
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NLP in Direct Single Shooting

After control and constraint discretization obtain NLP in
variables q and x0.
Note: calculate numerical DAE solution for each new (x0, q)!

minimize
q, x0

φ[x(t; q), z(t; q), u(t; q)]

subject to

c(ti, x(ti; q), z(ti; q), u(ti; q)) ≥ 0, i = 0, . . . , N,
ri

(
x0, x(t1; q), z(t1; q), . . . , x(tf ; q), z(tf ; q)

)
≥ 0,

re
(
x0, x(t1; q), z(t1; q), . . . , x(tf ; q), z(tf ; q)

)
= 0.

Solve with finite dimensional optimization solver, e.g.,
Sequential Quadratic Programming (SQP).
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Direct Single Shooting: Pros and Cons

I Sequential simulation and optimization.
+ Can use state-of-the-art ODE/DAE solvers.
+ Few degrees of freedom even for large ODE/DAE systems.
o Need only initial guess for controls q.
- Cannot use knowledge of x in initialization (e.g., in tracking

problems), impact on convergence region of Newton type
method.

- DAE solution x(t; q) can depend very nonlinearly on q,
existence not guaranteed.

- Unstable systems difficult to treat.
I Often used in engineering applications.
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Direct Collocation (Sketch) [Tsang et al. 1975]

I Discretize controls and states on fine grid with node values
si ≈ x(ti).

I Replace infinite dimensional ODE

0 = ẋ(t)− f (x(t), u(t)), t ∈ [t0, tf ]

by finitely many equality constraints

ci(qi, si, si+1) = 0, i = 0, . . . , N − 1,

e.g., ci(qi, si, si+1) := si+1−si
ti+1−ti

− f
(

si+si+1
2 , qi

)
I Approximate also integrals, e.g.,∫ ti+1

ti
L(x(t), u(t))dt ≈ L

(
si + si+1

2
, qi

)
(ti+1 − ti)
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NLP in Direct Collocation

After discretization obtain large scale, but sparse NLP:

minimize
q, s

φ[s, q]

subject to

ci(qi, si, si+1) = 0, i = 0, . . . , N − 1, (discretized ODE/DAE model)
c(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)

ri (s0, . . . , sN) ≥ 0, (multipoint inequality constraints)
re (s0, . . . , sN) = 0. (multipoint equality constraints)

Solve by SQP or interior point method for sparse problems.
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Direct Collocation: Pros and Cons

I Simultaneous simulation and optimization.
+ Large scale, but very sparse NLP.
+ Can use knowledge of x in initialization.
+ Can treat unstable systems well.
+ Robust handling of path and terminal constraints.
- Adaptivity needs new grid, changes

NLP dimensions.
I Successfully used for practical optimal control by, e.g.,

Biegler and Wächter (IPOPT), Betts, Bock/Schulz
(OCPRSQP), v. Stryk (DIRCOL), ...
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