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Q1. (Kittel&Kroemer 2.1) The question asks us to calculate the energy U and ∂2σ/∂U2 for an ideal gas whose
multiplicity function is given by g(U) = CU3N/2.

(a) The (dimensionless) entropy σ is defined as the logarithm of the multiplicity and the inverse of temperature
is the partial derivative of the entropy w.r.t. the energy. Then,
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The negative sign of the derivative ensures that the energy of the system always increases with increasing temperature.

Q2. (Kittel&Kroemer 2.2) The energy of a state with spin excess 2s is given by U = −2smB ⇒ s = − U
2mb .

Using Eq. (40) we find:
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This result is known as the Curie Law: the magnetization of a paramagnet increases linearly with the applied
uniform field and is inversely proportional to temperature.



Q3.(Kittel&Kroemer 2.3)

(a) The multiplicity function for N harmonic oscillators was found in Chapter 1. Using Eq. (1.55) we can find the
entropy of the system as follows:
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(b) Using U = nh̄ω and U0 = Nh̄ω, we can replace n/N in the equation above with U/U0 which leads to:
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Solving this equation for U gives:

eU0/Nτ =
U0

U
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⇒ U =
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