
1

Search By Name ID Algorithm
for the Skip Graph

Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü and Öznur Özkasap
Department of Computer Engineering, Koç University, İstanbul, Turkey

{yhassanzadeh13, akupcu, oozkasap}@ku.edu.tr

I. ALGORITHM OVERVIEW

The search by name id algorithm receives a target name id
as a binary string, searches for it through the Skip Graph and
returns the address of the node holding that name id. If the
node who holds the target name id does not exist in the Skip
Graph, the search algorithm returns the address of one of the
nodes holding the most similar name id to the search target.
The name ids similarity is defined by the common prefix length
of them. The longer common prefix two nodes have in their
name ids, their name ids are more similar to each other.

The search by name id is a distributed recursive algorithm
where each recursion continues on a separate node. The basic
idea of the algorithm is to find the node with the name id that
has the longer common prefix with the search target than the
current level number of the search. The algorithm then jumps
to the corresponding level and continues the search in that
level in the same manner recursively. The search is started by
the node who initiates the search from a certain level. That
certain level number corresponds to the common prefix length
in the name ids of the search initiator and the search target.
The search is terminated when either the search target has
been found or when in a certain level no node is found with
common prefix with the target name id greater than that level
number.

As an example, in Figure 1, there is no node with the name
id of 010. The most similar name id to 010 in the Skip Graph
is 011. This is the name id of the node holding the numerical
id 55. The 011 and 010 name ids have two bits prefix in
common. Both of their name ids start with 01 prefix. If the
node with the numerical id 55 and name id 011 does not exist
in the Skip Graph, the most similar name ids to the target
name id 010 are 000 and 001. These name ids both have only
one bit prefix in common with the target name id.

Similar to the search by numerical id, the search by name
id can be initiated and performed by any node of the Skip
Graph. Furthermore, an external node that does not belong to
the Skip Graph can initiate this search via an internal node of
the Skip Graph.

II. ALGORITHM DESCRIPTION

a) Inputs and Output: Algorithm I.1 shows the search by
name id procedure that receives two pointers Left and Right,
the search target name id as a binary string (searchTarget)
and the current level number (Level). It returns the address of
the node who holds the target name id as the Result pointer.

Algorithm I.1: Search By Name ID
Input: pointer Left, pointer Right, String searchTarget,

int Level
Output: pointer Result

1 pointer Buffer = Null;
2 while commonBits(searchTarget, Right) <= Level AND

commonBits(searchTarget, Left) <= Level do
3 if Left.nameID == searchTarget then
4 return Left;
5 if Right.nameID == searchTarget then
6 return Right;
7 if Left 6= NULL then
8 Buffer = Left;
9 Left = Left.lookup[Level][L];

10 if Right 6= NULL then
11 Buffer = Right;
12 Right = Right.lookup[Level][R];
13 if commonBits(searchTarget, Right) > Level then
14 Level = commonBits(Right, searchTarget);
15 Left = Right.lookup[Level][L];
16 Right = Right.lookup[Level][R];
17 SearchByNameID(Left, Right, searchTarget,

Level);
18 else if commonBits(searchTarget, Left) > Level then
19 Level = commonBits(Left, searchTarget);
20 Left = Left.lookup[Level][L];
21 Right = Left.lookup[Level][R];
22 SearchByNameID(Left, Right, searchTarget,

Level);
23 if Left == NULL AND Right == NULL then
24 return Buffer;

We assume that each Skip Graph node has a lookup table in the
form of a two dimensional array defined as lookup[levels][2],
where levels is the number of Skip Graph’s levels that is
equal to dlogNe in a Skip Graph with N nodes. For a certain
node, lookup[i][R] and lookup[i][L] return the right and left
neighbors of the node in the ith level of the Skip Graph,
respectively.

Assume that the node α wants to perform a search for
the target name id. Then, it initiates the search by calling
the SearchByNameID(α.lookup[cpl][L], α.lookup[cpl][R],
target, levels), where cpl is equal to the common prefix
length in the name ids of the search initiator and the search

2

Fig. 1: An example of the search by name id algorithm. The search initiator is the
node with name id 001 and search target is the node with name id 111

target.
b) Searching in a list (Lines 2-12): In the Algorithm I.1,

in a certain level, while neither the search target has been
found nor a node who holds common prefix length with the
search target greater than the number of that level, the search
will be continued by the Left and Right pointers in the left
and right directions in that level concurrently. When each of
the Left or Right pointers reach the left or right end of the
list in a certain level, respectively, their values become NULL
and they can not go any further.

c) Jumping to the upper level (Lines 13-22): While the
Right and Left pointers traverse a list in a certain level, if
they find a node that has greater common prefix in its name
id with the target name id than the current level number, the
search in that level is terminated. The algorithm then jumps
to the level that corresponds to the length of the common
prefix in the name ids of that node and the search target,
sets the pointers to their new values and continues the search
recursively.

d) Returning one of the most similar name ids (Lines 23-
24): There may be a case when both Right and Left pointers
reach to the right and left end of a list in a certain level. In
such case, there is not a more similar name id to the search
target in the Skip Graph. After a jump to the upper level, all
the nodes in the new level have the most similar name ids to
the search target up to that point of the algorithm execution.
Reaching both ends of the list in a certain level means that
there is no node with a better similarity to the search target. In
this situation, the most similar existing name ids to the search
target are the ones in the current level. All of the nodes in the
current level have the common prefix in their name ids with
the search target equal to the number of the current level. To
return the most similar name id as the result of the search, it
is enough to select one of the nodes in the current level. The
algorithm performs this task by keeping the latest value of the
Right and Left pointers in the Buffer pointer at the time
their value is going to be changed (Algorithm I.1, Lines 8 and
11). When both Left and Right pointers reach the end of a
list, the algorithm returns the value of the Buffer pointer as
one of the most similar name ids to the search target.

III. EXAMPLE

Figure 1 shows an example of the search by name id
algorithm, where the node with name id 001 and numerical

id 39 initiates a search for the target name id 111. The Rx
and Lx notation corresponds to the values of the Right and
Left pointers during the execution of the algorithm. Since
the common prefix length of 001 and 111 is zero, the search
is started at the level zero. The initiator sets the Left and
Right pointers to its left and right neighbors in the level zero,
respectively. The name id of the node who L1 holds its address
has one bit common prefix with the search target which is
greater than the current level number (zero). Therefore, the
initiator passes the search to the node with numerical id 28
and name id 100, and the algorithm jumps to the level 1. In
the level 1, the common prefix length between the name id of
the node that R2 holds its address and the target name id is 2
bits which is more than the current level number. Therefore,
the search is passed to the node with numerical id 71 and
name id 110, and the algorithm jumps to the level 2. In the
level 2, R3 holds the address of the node that has the search
target name id (111). The search is therefore finished and the
value of R3 is returned.

IV. TIME COMPLEXITY

As was described earlier, the main operations of search by
name id algorithm are jumping to the upper level and scanning
there recursively.

Theorem 1: In the search by name id algorithm, with high
probability, number of the scan operations in a certain level is
O(1).
Proof: In the kth level, the search continues in the left and
right directions until a node is found such that its common
prefix length with the search target is longer than k bits. Based
on the logic of the search algorithm, all of the nodes placed in
same list in the kth level have at least k bits common prefix
with the search target. Without loss of generality, assume that
the k+1th bit of the search target name id is zero. Therefore,
the search in the kth level continues until a node is found
such that its k + 1th bit of name id is equal to zero. Starting
from a certain node in the kth level, the probability that after
scanning a single node in both directions, no node is found
having the k + 1th bit equal to zero is 1

4 (The probability is
equal to 1

2 for each direction). The probability that such a node
is not found after a constant number of scan operations in both
directions is equal to the probability that such a node is found
after a variable number of scans, say m scan operations. The
probability that such a node is found after m scans in both
directions is equal to (14)

m. Based on the above discussion, the
probability of having the constant number of scan operations
in a certain level is equal to the complementary probability
of terminating the scan operations after scanning m nodes in
both directions which is equal to the 1− (14)

m.
Theorem 2: In search by name id, having N nodes in

the Skip Graph, the number of jumps to the upper level is
O(logN).
Proof: Number of the jumps is bounded by number of the
levels in Skip Graph which is O(logN).

Theorem 3: In a Skip Graph with maximum N number
of nodes, the search by name id traverses O(logN) nodes on
average to perform a search for a name id.

3

Proof: Based on the Theorems 1 and 2, in the worst case, the
search by name id algorithm traverses all the levels one by
one. In each level the number of the scan operations is O(1).
Therefore, the asymptotic running time of search by name
id is bounded by the number of Skip Graph’s level which is
O(logN).

