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Abstract. Security measures, such as proving the integrity of the data, became
more important with the increase in popularity of cloud data storage services. Dy-
namic Provable Data Possession (DPDP) was proposed in the literature to enable
the cloud server to prove to the client that her data is kept intact, even in a dy-
namic setting where the client may update her files. Realizing that variable-sized
updates are very inefficient in DPDP (in the worst case leading to uploading the
whole file again), Flexible DPDP (FlexDPDP) was proposed.
In this paper, we analyze FlexDPDP scheme and propose optimized algo-
rithms.We show that the initial pre-processing phase at the client and server sides
during the file upload (generally the most time-consuming operation) can be effi-
ciently performed by parallelization techniques that result in a speed up of 6 with
8 cores. We propose a way of handling multiple updates at once both at the server
and the client side, achieving an efficiency gain of 60% at the server side and
90% in terms of the client’s update verification time. We deployed the optimized
FlexDPDP scheme on the large-scale network testbed PlanetLab and demonstrate
the efficiency of our proposed optimizations on multi-client scenarios according
to real workloads based on version control system traces.

1 Introduction
Data outsourcing to the cloud has become popular with the availability of affordable and
more satisfying services (e.g., Dropbox, box.net, Google Drive, Amazon S3, iCloud,
Skydrive) as well as with several studies in academia [16, 2, 4, 31, 3, 15, 25, 30, 11, 18].
The most important impediment in public adoption of cloud systems is the lack of some
security guarantees in data storage services [24, 19, 33]. The schemes providing security
guarantees should incur minimal overhead on top of the already available systems in
order to promote wide adoption by the service providers.

In this work, we address the integrity of the client’s data stored on the cloud storage
servers. In a cloud storage system, there are two main parties, namely a server and a
client, where the client transmits her files to the cloud storage server and the server
stores the files on behalf of the client. For the client to be able to trust the service
provider, she should be able to verify the integrity of the data. A trustworthy brand is
not sufficient for the client, since hardware/software failures or malicious third parties
may also cause data loss or corruption [9].



Solutions for the static cases (i.e., logging or archival storage) such as Provable Data
Possession (PDP) [2] were proposed [2, 15, 25, 30, 3]. For the dynamic cases where the
client keeps interacting with her data, Scalable PDP was proposed by Ateniese et al.
[4], which allows a limited number of operations before a full re-calculation is required
to continue providing provable data possession. Extensions of the PDP, using some data
structures for dynamic cases, were first studied in Dynamic Provable Data Possession
(DPDP) [16] that allows data updates while still providing integrity guarantees. Im-
plementation of DPDP needs rank-based authenticated skip list as the underlying data
structure. It is shown that DPDP is not applicable to variable block sized settings (due
to the data structure used), hence resulting in unacceptable performance in the dynamic
secure cloud storage systems [17]. To solve this issue, a flexible length-based authenti-
cated skip list, called FlexList, and its application to a DPDP scheme allowing variable
block-sized updates, called FlexDPDP, were proposed [17]. In this study, we improve
the efficiency of the FlexDPDP system by proposing optimized algorithms on FlexList.

Our Contributions are as follows:

• We optimize the first pre-processing phase of the FlexDPDP provable cloud storage
protocol by showing that the algorithm to build a FlexList in O(n) time is well
parallelizable even though FlexList is an authenticated data structure that generates
dependencies over the file blocks. We propose a parallelization algorithm and our
experimental results show a speed up of 6 and 7.7, with 8 and 12 cores respectively.

• We provide a multi-block update algorithm for FlexDPDP. Our experiments show
60% efficiency gain at the server side compared to updating blocks independently,
when the updates are on consecutive data blocks.

• We provide an algorithm to verify update operations for FlexDPDP. Our new al-
gorithm is applicable to not only modify, insert, and remove operations but also
a mixed series of multiple update operations. The experimental results show an
efficiency gain of nearly 90% in terms of verification time of consecutive updates.

• We deployed the FlexDPDP implementation on the network testbed PlanetLab and
also tested its applicability on a real SVN deployment. The results show that our im-
proved scheme is practically usable in real life scenarios after optimization, namely
4 times faster proof generation for consecutive updates.

1.1 Related Work
Ateniese et al. proposed the first provable storage service named PDP [2] that can only
be applied to the static cases. To overcome this problem, Scalable PDP was proposed
which allows limited updates [4]. When it consumes its precomputed tokens, Scalable
PDP requires a setup phase from scratch. Wang et al. [32] proposed using Merkle tree
and Zheng and Zu [34] proposed 2-3 trees as the data structure on top of PDP. Yet, these
are also applicable to the static scenarios since there is no efficient algorithm, which
keeps the authentication information maintained, is shown for re-balancing neither of
these data structures. The authenticated skip lists that are probabilistically balanced in
case of any updates were first proposed by [29].

For improving data integrity on the cloud, protocols such as [12, 22, 10, 26, 21, 27]
provide Byzantium fault-tolerant storage services based on some server labor. There
also exist protocols using quorum techniques, which do not consider the server-client
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scenarios but works on local systems such as hard disk drives or local storage [23, 20, 1,
13]. A recent protocol using quorum techniques [5] replicates the data on several storage
providers to improve integrity of the data stored on the cloud; yet it also considers static
data.

Within provable data possession techniques, Erway et al. proposed a skip-list-like
data structure called rank based skip list [16] that allows dynamic operations. Yet Esiner
et al. [17] showed that updates in DPDP needs to be of fixed block size, and proposed
the FlexList data structure that allows variable length dynamic operations with DPDP
scheme. Detailed comparison and extended descriptions of these two data structures
are provided in [16, 17]. Some distributed versions of the idea have been studied as well
[14, 18]. There are also studies showing that a client’s file is kept intact in the sense that
client can retrieve (recover) it fully whenever she wishes [25, 30, 15, 11, 7].

FlexDPDP, using FlexList, can perform modify, insert, and remove operations one
block at a time on the cloud, without any limit on the number of updates and block
sizes, while maintaining data possession guarantees. It also provides verification algo-
rithms for update queries on single blocks. In this work, we show that the functions
in FlexDPDP are open to optimization, and propose optimized efficient algorithms by
evaluating them on the PlanetLab network testbed and with real data update scenarios.

2 Preliminaries
FlexDPDP approach provides variable block sized dynamic provable data possession
and uses FlexList as the underlying data structure. We first introduce the intuition be-
hind FlexList and definitions of FlexDPDP to form the basis for describing the proposed
optimizations.

Fig. 1. A FlexList example.

FlexList is a skip-list-like authenticated data structure (shown in Figure 1). Each
node keeps a hash value calculated according to its rank, level, the hash value of below
neighbor, and the hash value of the after neighbor, where rank indicates the number of
bytes that can be reached from the node, and level is the height of a node in the FlexList.
Note that the hash of the root node is dependent to all leaf level nodes’ hashes. Each
leaf level node keeps a link to the data (the associated block of the file stored) to which
it refers, the length of the data, and a tag value calculated for the data. Rank values are
calculated by adding the below and after neighbors’ ranks. If a node is at the leaf level,
we use the length of its data as below neighbor’s rank. FlexList has sentinel nodes as
the first and the last nodes, which have no data and hence their length value is 0, as
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shown in Figure 1. These nodes generate no new dependencies but are useful to make
algorithms easier and more understandable.

A node’s below neighbor’s rank shows how many bytes can be reached following
the below link. The search operation uses this information to find a searched index.
We check if the searched index is less than the rank of the below neighbor, if so we
follow the below link, otherwise we follow the after link. When we follow an after link,
the index we look for is diminished by the amount of bytes passed (rank of the below
node). We repeat this procedure to reach the node that includes the search index. A
search path is the ordered set of nodes visited on the way to reach a searched index by
following the above rule starting from the root.

Fig. 2. Insert and remove examples on FlexList.

Insert/Remove operations perform addition/removal of a leaf node by keeping the
necessary non-leaf nodes and removing the unnecessary ones, thus preserving the opti-
mality of the structure (definitions and details are provided in [17]). Figure 2 illustrates
an example of both insert and remove operations. First we insert a data of length 50
to index 110 at level 2. Dashed lines show the nodes and links which are removed, and
bold lines show the newly added ones. Node c5 is removed to keep the FlexList optimal
[17]. The old rank values are marked and new values written below them. For the re-
moval of the node at index 110, read the figure in the reverse order, where dashed nodes
and lines are newly added ones and strong nodes and lines are to be removed, and the
initial rank values are valid again.

Besides search, modify, insert, and remove algorithms, a build skip list algorithm
was introduced in [17] that generates a FlexList on top of an ordered data using O(n)
time. The algorithm takes all data blocks, their corresponding tag values, and levels of
prospective nodes as input, and generates the FlexList attaching nodes from right to
left, instead of a series of insert method calls (which would cost O(n logn) in total). In
Figure 1, the order of node generation is: c16, c15, c14, c13, c12, c11, c10, c9, and so on.

FlexDPDP [17] is a FlexList-based secure cloud storage scheme built on DPDP
[16]. The scheme starts with the client pre-processing and uploading her data to the
server. While pre-processing, both the client and the server build a FlexList over the
data blocks. The client keeps the root of the FlexList as her meta data and the server
keeps the FlexList as a whole. The server later uses the FlexList to generate proofs of
data possession.

For proof of possession, Esiner et al. proposed an algorithm named genMultiProof
[17], which collects all necessary values through search paths of the challenged nodes
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without any repetition. A multi proof is a response to a challenge of multiple nodes. For
instance, a challenge to indices 50, 180, 230 in Figure 1 is replied by a proof vector as
in Figure 4, together with a vector of tags of the challenged nodes and the block sum
of the corresponding blocks. This proof vector is used to verify the integrity of these
specific blocks. We use, in Section 3.3, this proof vector to verify the multiple updates
on the server as well.

The client verifies the proof by calling verifyMultiProof which calculates the hash
values from the proof vector one by one until the root’s hash value. If the hash value of
the root is equal to the meta data that the client keeps, and hashes and tags are verified,
the client is satisfied. We use the verifyMultiProof method to verify the proof of the
nodes on which we perform updates. Update information consists of the index of the
update, the new data and the corresponding tag.

3 Optimizations on FlexDPDP
In this section, we describe our optimizations on FlexDPDP and FlexList for achieving
an efficient and secure cloud storage system. We then demonstrate the efficiency of our
optimizations in the next section.

First, we observe that a major time consuming operation in the FlexDPDP scheme is
the pre-process operation, where a build FlexList function is employed. Previous O(n)
time algorithm [17] is an asymptotic improvement, but in terms of actual running times,
it is still noticeably slow to build a large FlexList (e.g., half a minute for a 1GB file with
500000 blocks). A parallel algorithm can run as fast as its longest chain of dependent
calculations, and in the FlexList structure each node depends on its children for the hash
value; yet we show that building a FlexList is surprisingly well parallelizable.

Second, we observe that performing and verifying FlexDPDP updates in batches
yield great performance improvements, and also match the real world usage of such a
system. The hash calculations of a FlexList take most of the time spent for an update,
and performing them in batches may save many hash unnecessary calculations.

Therefore, in this section, we provide a parallel algorithm for building FlexList,
a multi-block update algorithm for the server to perform updates faster, and a multi-
block verification algorithm for the client to verify the update proofs sent by the server.
Notation used in our algorithms is presented in Table 1.

3.1 Parallel Build FlexList

Fig. 3. A build skip list distributed to 3 cores.

We propose a parallel algorithm to generate a FlexList over the file blocks, resulting
in the same FlexList as a sequentially generated one. The algorithm has three steps.
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Symbol Description
cn / nn current node / new node

a f ter / below node reached by following the after link / by following the below link
C contains the indices that are challenged (ascending order)

i / f irst / last index / C’s current index / C’s end index
rs The amount of bytes passed with each follow of an a f ter link

state state contains a node, rank state, and last index. These values are used to set the
current node cn to the point where the algorithm will continue

P / T / M proof vector / tag vector / block sum
ts intersection stack, stores states at intersections
tl stores nodes for which a hash calculation is to be done

Method Description
canGoBelow [17] returns true if the searched index can be reached by following the below link
isIntersection [17] returns true when the first index can be found following the below link and the

second index is found by following the after link. If there are more than one
intersection, decrements last for each until finds the closest one

generateIndices generates an array of indices of the nodes that have been affected. Say the update
index is i, the algorithm adds i for an insert or modify, adds i and i-1 for a remove

Table 1. Symbols and helper methods used in our algorithms.

Figure 3 shows the parallel construction of the same FlexList as in Figure 1 on three
cores. We first distribute tasks to threads and generate small FlexLists. Second, to unify
them, we connect all roots together with links (c1 to r1 and r1 to r2, thus eliminate l1 and
l2) and calculate new rank values of the roots (r1 and c1). Third, we use basic remove
function to remove the left sentinels, which remain in between each part (to indices 360
and 180: 360 = c1.rank - r2.rank and 180 = c1.rank - r1.rank). In the example, the remove
operation generates c5 and c10 of Figure 1 and connects the remaining nodes to them,
and rank values on the search paths of c2, c6, c7, c11 are recalculated after the removal
of sentinel nodes. As a result, all the nodes of the small FlexLists are connected to their
level on the FlexList. After the unify operation, we obtain the same FlexList of Figure
1 generated efficiently in a parallel manner.

3.2 Handling Multiple Updates at Once
We investigated the verifiable updates and inferred that the majority of the time spent
is for the hash calculations in each update. We discuss this in detail in Section 4. When
a client alters her data and sends it to the server, she generates a vector of updates (U)
out of a diff algorithm, which is used used to show the changes between the last and the
former versions of a file.

Algorithm 3.1: multiUpdate Algorithm
Input: FlexList, U
Output: P, T , M, newRootHash

Let U = (u0, . . . ,uk) where u j is the jth update information
C = generateIndices(U) //According to the nature of the update for each u ∈U , we add an1
index to the vector (u j .i for insert and modify, u j .i and u j .i−1 for remove as it is for a
single update proof)
P, T , M= genMultiProof(C) //Generates the multiProof using the FlexList2
for i = 0 to k do3

apply ui to FlexList without any hash calculations4
update C to all affected nodes using U5
calculateMultiHash(C) // Calculates hash values of the changed nodes6
newRootHash = FlexList.root.hash7

6



An update information u ∈U , includes an index i, and (if insert or modify) a block
and a tag value. Furthermore, the updates on a FlexList consist of a series of modify
operations followed by either insert or remove operations, all to adjacent nodes. This
nature of the update operations makes single updates inefficient since they keep calcu-
lating the hash values of the same nodes over and over again. To overcome this problem,
we propose dividing the task into two: doing a series of updates without the hash cal-
culations, and then calculating all affected nodes’ hash values at once, where affected
means that at least an input of the hash calculation of that node has changed. The mul-
tiUpdate (Algorithm 3.1) gets a FlexList and vector of updates U , and produces proof
vector P, tag vector T , block sum M, and new hash value newRootHash of the root after
the updates.
hashMulti (Algorithm 3.2), employed in calculateMultiHash algorithm, collects nodes
on a search path of a searched node. In the meantime, it is collecting the intersection
points (which is the lowest common ancestor (lca) of the node the collecting is done for
and the next node of which the hash calculation is needed). The repetitive calls from cal-
culateMultiHash algorithm for each searched node collects all nodes which may need a
hash recalculation. Note that each time, a new call starts from the last intersecting (lca)
node.

Algorithm 3.2: hashMulti Algorithm
Input: cn, C, f irst, last, rs, tl , ts
Output: cn, tl , ts

// Index of the challenged block (key) is calculated according to the current sub skip
list root
i = C f irst−rs1
while Until challenged node is included do2

cn is added to tl3
//When an intersection is found with another branch of the proof path, it is saved
to be continued again, this is crucial for the outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk , rs) then4

//note that lastk becomes lastk+1 in isIntersection method
state(cn.a f ter, lastk+1, rs+cn.below.r) is added to ts5

if (CanGoBelow(cn, i)) then6
cn = cn.below //unless at the leaf level7

else8
// Set index and rank state values according to how many bytes at leaf nodes are
passed while following the a f ter link
i -= cn.below.r; rs += cn.below.r; cn = cn.a f ter9

calculateMultiHash (Algorithm 3.3) first goes through all changed nodes and collects
their pointers, then calculates all their hash values from the largest index value to the
smallest, until the root. This order of hash calculation respects all hash dependencies.
We illustrate handling multiple updates with an example. Consider a multiUpdate called
on the FlexList of Figure 1 and a consecutive modify and insert happen to indices 50
and 110 respectively (insert level is 2). When the updates are done without hash cal-
culations, the resulting FlexList looks like in Figure 2. Since the tag value of c6 has
changed and a new node added between c6 and c7, all the nodes getting affected should
have a hash recalculation. If we first perform the insert, we need to calculate hashes of
n3, n2, c6, n1, c2 and c1. Later, when we do the modification to c6 we need to recalculate
hashes of nodes c6, n1, c2 and c1. There are 6 nodes to recalculate hashes but we do 10
hash calculations. Instead, we propose performing the insert and modify operations and
call calculateMultiHash to indices 50 and 110. The first call of hashMulti goes through
c1, c2, n1, and c6. On its way, it pushes n2 to a stack since the next iteration of hash-
Multi starts from n2. Then, with the second iteration of calculateMultiHash, n2 and n3
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are added to the stack. At the end, we call the nodes from the stack one by one and
calculate their hash values. Note that the order preserves the hash dependencies.

Algorithm 3.3: calculateMultiHash Algorithm
Input: C
Output:

Let C= (i0, . . . , ik) where i j is the ( j+1)th altered index; statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; ts, tl are empty; state= (root, k, rs)1
// Call hashMulti method for each index to fill the changed nodes stack tl
for x = 0 to k do2

hashMulti(state.node,C,x,state.end,state.rs,tl ,ts)3
if ts not empty then4

state = ts.pop(); cn = state.node ; state.rs += cn.below.r5
for k =tl .size to 0 do6

calculate hash of kth node in tl7

3.3 Verifying Multiple Updates at Once
When the multiUpdate algorithm is used at the server side of the FlexDPDP protocol,
it produces a proof vector, in which all affected nodes are included, and a hash value,
which corresponds to the root of the FlexList after all of the update operations are
performed.

The solution we present to verify such an update is constructed in four parts.
First, we verify the multi proof both by FlexList verification and tag verification.

Fig. 4. An output of a multiProof algorithm.

Second, we construct a
temporary FlexList, which
is constituted of the parts
necessary for the updates.
Third, we do the updates
as they are, at the client
side. The resulting tempo-
rary FlexList has the root of
the original FlexList at the
server side after performing
all updates correctly. Fourth and last, we check if the new root we calculated is the
same as the one sent by the server. If they are the same return accept and update the
meta data that is kept by the client.

Fig. 5. The temporary FlexList generated out of the proof
vector in Figure 4. Note that node names are the same with
Figure 1.

Constructing a temporary
FlexList out of a multi proof:
Building a temporary FlexList
is giving the client the opportu-
nity to use the regular FlexList
methods to do the necessary
changes to calculate the new
root. Dummy nodes that we use
below are the nodes that have
some values set and are never
subject to recalculation.

We explain the algorithm
A.1 (see Appendix) using the proof vector presented in Figure 4. The output of the
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algorithm given the proof vector is the temporary FlexList in Figure 5. First, the al-
gorithm takes the proof node for c1, generates the root using its values and adds the
dummy after, with the hash value (of c16) stored in it. And the nodes are connected to
each other depending on their attributes. The proof node for c2 is used to add node c2 to
the below of c1 and the c2’s dummy node is connected to its below with rank value of
50, calculated as rank of c2 minus rank of c5. Note that the rank values of below nodes
are used in regular algorithms so we calculate and set them. The next iteration sets c5
as c2’s after and c5’s dummy node c10 is added to c5’s after. The next step is to add c6
to the below of c5. c6 is both an end node and an intersection node, therefore we set
its tag (from the tag vector) and its length values. Then we attach c7 and calculate its
length value since it is not in the proof vector generated by genMultiProof (but we have
the necessary information: the rank of c7 and the rank of c8). Next, we add the node for
c8, and set its length value from the proof node and its tag value from the tag vector.
Last, we do the same to c9 as c8. The algorithm outputs the root of the new temporary
FlexList.

Verification: Recall that U is the list of updates generated by the client. An update
information u ∈U , includes an index i, and if the update is an insertion or modification,
a block and a tag value. The client calls verifyMultiUpdate (Algorithm A.2) with its
meta data and the outputs P, T , M of multiUpdate from the server. If verifyMultiProof
returns accept, we call buildDummyFlexList with the proof vector P. The resulting tem-
porary FlexList is ready to handle updates. Again we perform the updates without the
hash calculations and then call the calculateMultiHash algorithm. But, we do not need
to track changes to call a calculateMultiHash at the end, but instead calculate the hash
of all the nodes present in the list. Last, we check if the resulting hash of the root of
our temporary FlexList is equal to the one sent by the server. If they are the same, we
accept and update the client’s meta data.

4 Experimental Evaluation
We used our implementations of the FlexList data structure and the FlexDPDP protocol,
that are in C++ with the aid of the Cashlib library [28, 8] for cryptography and the
Boost Asio library [6] for network programming. Our local experiments are run on a
64-bit computer possessing 4 Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz CPU, 16GB
of memory and 16MB of L2 level cache, running Ubuntu 12.04 LTS. The security
parameters are as follows: 1024 bit RSA modulus, 80 bit random numbers, SHA1 as
hash function resulting with an expected security of 80 bits. Mostly, FlexList operations
run on RAM, but we keep each block of a file separately on the hard disk drive and
include the I/O times in our experimental analysis.

4.1 Parallel buildFlexList Performance
Figure 6 shows the build FlexList function’s time as a function of the number of cores
used in parallel. The case of one core corresponds to the buildFlexList function pro-
posed in [17]. From 2 cores to 24 cores, we measure the time spent by our parallel build
FlexList function. Notice the speed up where parallel build reduces the time to build a
FlexList of 4 million blocks from 240 seconds to 30 seconds on 12 coresThe speedup
values are reported in Figure 7 where T stands for time for a single core used and Tp
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Fig. 6. Time spent while building a FlexList
from scratch.

Fig. 7. Speedup values of buildFlexList
function with multiple cores.

stands for time with p number of cores used. The more sub-tasks created, the more time
is required to divide the big task into parts and to combine them. We see that a FlexList
of 100000 blocks does not get improved as much, since the sub tasks are getting smaller
and the overhead of thread generation starts to surpass the gain of parallel operations.
Starting from 12 cores, we observe this side effect for all sizes. For 500000 blocks (i.e.,
1GB file) and larger FlexLists, speed ups of 6 and 7.7 are observed on 8 and 12 cores
respectively.

4.2 Server-Side Multi Update Operations
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Fig. 8. Time spent for an update operation in
FlexList with and without hash calculations.
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Fig. 9. Time spent on performing multi up-
dates against series of single updates.

Results for the core FlexList methods (insert, remove, modify) with and without
the hash calculations for various sizes of FlexList are shown in Figure 8. Even with
the I/O time, the operations with the hash calculations take 10 times more time than
the simple operations in a 4GB file (i.e., 2000000 nodes). The hash calculations in
an update take 90% of the time spent for an update operation. Therefore, this finding
indicates the benefit of doing hash calculations only once for multiple updates in the
performMultiUpdate algorithm.

performMultiUpdate allows using multi proofs as discussed in Section 3. This pro-
vides ∼25% time and space efficiency on the verifiable update operations when the
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update is ∼20KB, and this gain increases up to ∼35% with 200KB updates.The time
spent for an update at the server side for various size of updates is shown in Figure 9
with each data point reflecting the average of 10 experiments. Each update is an even
mix of modify, insert, and remove operations. If the update locality is high, meaning
the updates are on consecutive blocks (a diff operation generates several modifies to
consecutive blocks followed by a series of remove if the added data is shorter than the
deleted data, or a series of inserts otherwise [17]), using our calculateMultiHash algo-
rithm after the updates without hash calculation on a FlexList for a 1GB file, the server
time for 300 consecutive update operations (a 600KB update) decreased from 53ms
to 13ms.

4.3 Client-Side Multi Update Operations
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Fig. 10. MultiVerify of an update against standard verify
operations.

For the server to be able to
use multiUpdate algorithm, the
client could be able to verify
multiple updates at once. Other-
wise, as each single verify up-
date requires a root hash value
after that specific update, all
hash values on the search path of
the update should be calculated
each time. Also, each update
proof should include a FlexList
proof alongside them. Verify-
ing multiple updates at once not
only diminishes the proof size
but also provides time improve-
ments at the client side. Figure
10 shows that a multi verify op-
eration is faster at the client side when compared to verifying all the proofs one by
one. We tested two scenarios: One is for the updates randomly distributed along the
FlexList, and the other is for the updates with high locality. The client verification time
is highly improved. For instance, with a 1GB file and a 300KB update, verification at
the client side was reduced from 45ms to less than 5ms. With random updates, the multi
verification is still 2 times faster.

4.4 Real Usage Performance Analysis via PlanetLab
We deployed the FlexDPDP model on the world-wide network testbed PlanetLab. We
chose a node in Wuerzburg, Germany1 on PlanetLab as the server which has two In-
tel(R) Core(TM)2 CPU 6600 @ 2.40GHz (IC2) and 48MBit upload and 80MBit down-
load speed. Our protocol runs on a 1GB file, which is divided into blocks of 2KB, having
500000 nodes (for each client). The throughput is defined as the maximum number of

1planetlab1.informatik.uni-wuerzburg.de
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queries the server can reply in a second. Our results are the average of 50 runs on the
PlanetLab with randomly chosen 50 clients from all over the Europe.

Challenge queries :
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Fig. 11. Clients challenging their data. Two lines present:
first, server throughput in count per second and second,
whole time for a challenge query of FlexDPDP, in ms.

We measured two metrics,
the whole time spent for a chal-
lenge proof interaction at the
client side and the throughput
of the server (both illustrated
in Figure 11). As shown in the
Figure, the throughput of the
server is around 21. When the
server limit is reached, we ob-
serve a slowdown on the client
side where the response time in-
creases from around 500 ms to
1250 ms. Given that preparing a
proof of size 460 using the IC2
processor takes 40ms using gen-
MultiProof on a single core, we
conclude that the bottleneck is
not the processing power. The
challenge queries are solely a seed, thus the download speed is not the bottleneck nei-
ther. A proof of a multi challenge has an average size of 280KB (∼215KB FlexList
proof,∼58KB tags,∼2KB blocksum), therefore to serve 21 clients in a second a server
needs 47 MBit upload speed which seems to be the bottleneck in this experiment. The
more we increase the upload speed, the more clients we can serve with such a low end
server.
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Fig. 12. Server throughput versus the frequency
of the client queries.
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Fig. 13. A client’s total time spent for an up-
date query (sending the update, receiving a
proof and verifying the proof).
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Update queries :
Real life usage analysis over real version control system traces: We have con-

ducted analysis on the SVN server where we have 350MB of data that we have been
using for the past 2 years. We examined a sequence of 627 commit calls and provide
results for an average usage of a commit function by means of the update locality, the
update size being sent through the network, and the updated number of blocks.

We consider the directory hierarchy proposed in [16]. The idea presented is to set
root of each file’s FlexList (of the single file scheme presented) in the leaf nodes of a
dictionary used to organize files. The update locality of the commits is very high. More
than 99% of the updates in a single commit occur in the same folder, thus do not affect
most parts of the directory, thus FlexList but a small portion of them. Moreover, 27%
of the updates are consecutive block updates on a single field of a single file.

With each commit an average of size 77KB is sent, where we have 2.7% commits
of size greater than 200KB and 85% commits has size less than 20KB. These sizes are
the amounts sent through the network. Erway et al. show analysis on 3 public SVN
repositories. They indicate that the average update size is 28KB [16]. Therefore in our
experiments on PlanetLab we choose 20KB (to show general usage) and 200KB (to
show big commits) as the size sent for a commit call. The average number of blocks
affected per commit provided by Erway et al. is 13 [16] and is 57.7 in our SVN repos-
itory. They both show the necessity of efficient multiple update operations.

We observe the size variation of the commits and see that the greatest common
divisor of the size of all commits is 1, as expected. Thus we conclude that fixed block
sized rank-based authenticated skip lists is not applicable to the cloud storage scenario.

Update size and type Server proof generation time Corresponding proof size
200KB (100 blocks) randomly dist. 30ms 70KB
20KB (10 blocks) randomly dist. 10ms 11KB
200KB (100 blocks) consecutive 7ms 17KB
20KB (10 blocks) consecutive 6ms 4KB

Table 2. Proof time and size table for various type of updates.

Update queries on the PlanetLab: We perform analysis using the same metrics as a
challenge query. The first one is the whole time spent at the client side (Figure 13) and
the second one is the throughput of the server (Figure 12), for updates of size ∼20KB
and ∼200KB. We test the behavior of the system by varying the query frequency, the
update size, and the update type (updates to consecutive blocks or randomly selected
blocks). Table 2 shows the measurements for each update type.

Figure 12 shows that a server can reply to ∼45 many updates of size 20KB and
∼8 many updates of size 200KB per second. Figure 13 also approves, that the server is
loaded, by the increase in time of a client getting served. Comparing update proofs with
the proof size of only challenges (shown in Figure 11), we conclude that the bottleneck
for replying update queries is not the upload speed of the server, since a randomly
distributed update of size 200KB needs 70KB proof and 8 proof per second is using just
4.5 Mbit of the upload bandwidth or a randomly distributed updates of size 20KB needs
a proof of size 11KB and 45 proof per second uses only 4MBit of upload bandwidth.
Table 2 shows the proof generation times at the server side. 30ms per 200KB random
operation is required so a server may answer up to 110-120 queries per second with IC2
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processor and 10ms per 20KB random operation is required, thus a server can reply
up to 300 queries per second. Therefore, the bottleneck is not the processing power
either. Eventually the amount of queries of a size a server can accept per second is
limited, even though the download bandwidth does not seem to be loaded up. But, note
that the download speed is checked with a single source and a continuous connection.
When a server keeps accepting new connections, the end result is different. This was
not a limiting issue in answering challenge queries since a challenge is barely a seed
to show the server which blocks are challenged. In our setting, there is one thread at
the server side which accepts a query and creates a thread to reply it. We conclude that
the bottleneck is the server query acceptance rate of our implementation. These results
indicate that with a distributed and replicated server system, a server using FlexDPDP
scheme may reply to more queries.

5 Conclusion and Future Work
In this study, we have extended the FlexDPDP scheme with optimized and efficient
algorithms, and tested their performance on real workloads in network realistic settings.
We obtained a speed up of 6 using 8 cores on the pre-processing step, 60% improvement
on the server-side updates, and 90% improvement while verifying them at the client
side. We deployed the scheme on the PlanetLab testbed and provided detailed analysis
using real version control system workload traces. As future work, we plan to extend
FlexDPDP to distributed and replicated servers.
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optimized dynamic provable data possession. Cryptology ePrint Archive, Report 2013/645,
2013.
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28. S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. Zkpdl: Enabling effi-

cient implementation of zero-knowledge proofs and e-cash. In USENIX Security, 2010.
29. C. Papamanthou and R. Tamassia. Time and space efficient algorithms for two-party authen-

ticated data structures. In ICICS, 2007.
30. H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, 2008.
31. P. T. Stanton, B. McKeown, R. C. Burns, and G. Ateniese. Fastad: an authenticated directory

for billions of objects. SIGOPS Oper. Syst. Rev., 2010.
32. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and data dynam-

ics for storage security in cloud computing. In ESORICS, 2009.
33. P. S. Wooley. Identifying cloud computing security risks. Technical report, 7 University of

Oregon Eugene, 2011.
34. Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In CODASPY, 2011.

15



A Optimization Algorithms
Algorithm A.1: constructTemporaryFlexList Algorithm

Input: P, T
Output: root (temporary FlexList)

Let P = (A0, . . . ,Ak), where A j = ( level j , r j , hash j , rgtOrDwn j , isInter j , isEnd j , length j) for
j = 0, . . . ,k; T = (tag0, . . . , tagt ), where tagt is tag for challenged blockt and dummy nodes are
nodes including only hash and rank values set on them and they are final once they are
created; //
root = new Node(r0, length0) // This node is the root and we keep this as a pointer to return1
at the end//
ts = new empty stack2
cn = root3
dumN = new dummy node is created with hash j4
cn.after = dumN5
for i = 0 to k do6

nn = new node is created with Leveli+1 and ri+17
if isEndi and isInteri then8

cn.tag = next tag in T ; cn.length = lengthi ; cn.after = nn; cn = cn.after9
else if isEndi then10

cn.tag = next tag in T ; cn.length = lengthi ; if ri != lengthi then11
dumN = new dummy node is created with hashi as hash and ri - lengthi as rank12
cn.after = dumN13

if ts is not empty then14
cn = ts.pop() ; cn.after = nn; cn = cn.after15

else if leveli = 0 then16
cn.tag = hashi ; cn.length = ri - ri+1 ; cn.after = nn ; cn = cn.after17

else if isInteri then18
cn is added to ts ; cn.below = nn; cn = cn.below19

else if rgtOrDwni = rgt then20
cn.after = nn21
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank22
cn.below = dumN ; cn = cn.after23

else24
cn.below = nn25
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank26
cn.after = dumN ; cn = cn.below27

return root28

Algorithm A.2: verifyMultiUpdate Algorithm
Input: P, T ,MetaData, U, MetaDatabyServer
Output: accept or reject

Let U= (u0, . . . ,uk) where u j is the jth update information
if !verifyMultiProof(P, T, MetaData) then1

return reject2
FlexList = buildTemporaryFlexList(P)3
for i = 0 to k do4

apply ui to FlexList without any hash calculations5
calculate hash values of all nodes in the temporary FlexList. //A recursive call from the root6
if root.hash != MetaDatabyServer then7

return reject8
return accept9
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