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Abstract

Proofs of retrievability allow a client to store her data on a remote server (e.g., “in the cloud”) and
periodically execute an efficient audit protocol to check that all of the data is being maintained correctly
and can be recovered from the server. For efficiency, the computation and communication of the server
and client during an audit protocol should be significantly smaller than reading/transmitting the data in
its entirety. Although the server is only asked to access a few locations of its storage during an audit, it
must maintain full knowledge of all client data to be able to pass.

Starting with the work of Juels and Kaliski (CCS ’07), all prior solutions to this problem crucially
assume that the client data is static and do not allow it to be efficiently updated. Indeed, they all store a
redundant encoding of the data on the server, so that the server must delete a large fraction of its storage
to ‘lose’ any actual content. Unfortunately, this means that even a single bit modification to the original
data will need to modify a large fraction of the server storage, which makes updates highly inefficient.
Overcoming this limitation was left as the main open problem by all prior works.

In this work, we give the first solution providing proofs of retrievability for dynamic storage, where the
client can perform arbitrary reads/writes on any location within her data by running an efficient protocol
with the server. At any point in time, the client can execute an efficient audit protocol to ensure that the
server maintains the latest version of the client data. The computation and communication complexity of
the server and client in our protocols is only polylogarithmic in the size of the client’s data. The starting
point of our solution is to split up the data into small blocks and redundantly encode each block of data
individually, so that an update inside any data block only affects a few codeword symbols. The main
difficulty is to prevent the server from identifying and deleting too many codeword symbols belonging
to any single data block. We do so by hiding where the various codeword symbols for any individual
data block are stored on the server and when they are being accessed by the client, using the algorithmic
techniques of oblivious RAM.
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1 Introduction

Cloud storage systems (Amazon S3, Dropbox, Google Drive etc.) are becoming increasingly popular as a
means of storing data reliably and making it easily accessible from any location. Unfortunately, even though
the remote storage provider may not be trusted, current systems provide few security or integrity guarantees.

Guaranteeing the privacy and authenticity of remotely stored data while allowing efficient access and
updates is non-trivial, and relates to the study of oblivious RAMs and memory checking, which we will
return to later. The main focus of this work, however, is an orthogonal question: How can we efficiently
verify that the entire client data is being stored on the remote server in the first place? In other words, what
prevents the server from deleting some portion of the data (say, an infrequently accessed sector) to save on
storage?

Provable Storage. Motivated by the questions above, there has been much cryptography and security
research in creating a provable storage mechanism, where an untrusted server can prove to a client that her
data is kept intact. More precisely, the client can run an efficient audit protocol with the untrusted server,
guaranteeing that the server can only pass the audit if it maintains full knowledge of the entire client data.
This is formalized by requiring that the data can be efficiently extracted from the server given its state at
the beginning of any successful audit. One may think of this as analogous to the notion of extractors in the
definition of zero-knowledge proofs of knowledge [15, 4].

One trivial audit mechanism, which accomplishes the above, is for the client to simply download all of
her data from the server and check its authenticity (e.g., using a MAC). However, for the sake of efficiency,
we insist that the computation and communication of the server and client during an audit protocol is much
smaller than the potentially huge size of the client’s data. In particular, the server shouldn’t even have to
read all of the client’s data to run the audit protocol, let alone transmit it. A scheme that accomplishes the
above is called a Proof of Retrievability (PoR).

Prior Techniques. The first PoR schemes were defined and constructed by Juels and Kaliski [20], and
have since received much attention. We review the prior work and and closely related primitives (e.g.,
sublinear authenticators [24] and provable data possession [1]) in Section 1.2.

On a very high level, all PoR constructions share essentially the same common structure. The client
stores some redundant encoding of her data under an erasure code on the server, ensuring that the server
must delete a significant fraction of the encoding before losing any actual data. During an audit, the client
then checks a few random locations of the encoding, so that a server who deleted a significant fraction will
get caught with overwhelming probability.

More precisely, let us model the client’s input data as a string M ∈ Σ` consisting of ` symbols from
some small alphabet Σ, and let Enc : Σ` → Σ`′ denote an erasure code that can correct the erasure of up
to 1

2 of its output symbols. The client stores Enc(M) on the server. During an audit, the client selects
a small random subset of t out of the `′ locations in the encoding, and challenges the server to respond
with the corresponding values, which it then checks for authenticity (e.g., using MAC tags). Intuitively,
if the server deletes more than half of the values in the encoding, it will get caught with overwhelming
probability > 1 − 2−t during the audit, and otherwise it retains knowledge of the original data because of
the redundancy of the encoding. The complexity of the audit protocol is only proportional to t which can
be set to the security parameter and is independent of the size of the client data.1

Difficulty of Updates. One of the main limitations of all prior PoR schemes is that they do not support
efficient updates to the client data. Under the above template for PoR, if the client wants to modify even a
single location of M, it will end up needing to change the values of at least half of the locations in Enc(M)

1Some of the more advanced PoR schemes (e.g., [28, 10]) optimize the communication complexity of the audit even further
by cleverly compressing the t codeword symbols and their authentication tags in the server’s response.
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on the server, requiring a large amount of work (linear in the size of the client data). Constructing a PoR
scheme that allows for efficient updates was stated as the main open problem by Juels and Kaliski [20]. We
emphasize that, in the setting of updates, the audit protocol must ensure that the server correctly maintains
knowledge of the latest version of the client data, which includes all of the changes incurred over time.
Before we describe our solution to this problem, let us build some intuition about the challenges involved
by examining two natural but flawed proposals.

First Proposal. A natural attempt to overcome the inefficiency of updating a huge redundant encoding
is to encode the data “locally” so that a change to one position of the data only affects a small number
of codeword symbols. More precisely, instead of using an erasure code that takes all ` data symbols as
input, we can use a code Enc : Σk → Σn that works on small blocks of only k � ` symbols encoded into
n symbols. The client divides the data M into L = `/k message blocks (m1, . . . ,mL), where each block
mi ∈ Σk consists of k symbols. The client redundantly encodes each message block mi individually into
a corresponding codeword block ci = Enc(mi) ∈ Σn using the above code with small inputs. Finally the
client concatenates these codeword blocks to form the value C = (c1, . . . , cL) ∈ ΣLn, which it stores on the
server. Auditing works as before: The client randomly chooses t of the L · n locations in C and challenges
the server to respond with the corresponding codeword symbols in these locations, which it then tests for
authenticity.2 The client can now read/write to any location within her data by simply reading/writing to
the n relevant codeword symbols on the server.

The above proposal can be made secure when the block-size k (which determines the complexity of
reads/updates) and the number of challenged locations t (which determines the complexity of the audit) are
both set to Ω(

√
`) where ` is the size of the data (see Appendix A for details). This way, the audit is likely to

check sufficiently many values in each codeword block ci. Unfortunately, if we want a truly efficient scheme
and set n, t = o(

√
`) to be small, then this solution becomes completely insecure. The server can delete a

single codeword block ci from C entirely, losing the corresponding message block mi, but still maintain a
good chance of passing the above audit as long as none of the t random challenge locations coincides with
the n deleted symbols, which happens with good probability.

Second Proposal. The first proposal (with small n, t) was insecure because a cheating server could easily
identify the locations within C that correspond to a single message block and delete exactly the codeword
symbols in these locations. We can prevent such attacks by pseudo-randomly permuting the locations of all
of the different codeword-symbols of different codeword blocks together. That is, the client starts with the
value C = (C[1], . . . ,C[Ln]) = (c1, . . . , cL) ∈ ΣLn computed as in the first proposal. It chooses a pseudo-
random permutation π : [Ln] → [Ln] and computes the permuted value C′ := (C[π(1)], . . . ,C[π(Ln)])
which it then stores on the server in an encrypted form (each codeword symbol is encrypted separately).
The audit still checks t out of Ln random locations of the server storage and verifies authenticity.

It may seem that the server now cannot immediately identify and selectively delete codeword-symbols
belonging to a single codeword block, thwarting the attack on the first proposal. Unfortunately, this mod-
ification only re-gains security in the static setting, when the client never performs any operations on the
data.3 Once the client wants to update some location of M that falls inside some message block mi, she
has to reveal to the server where all of the n codeword symbols corresponding to ci = Enc(mi) reside in
its storage since she needs to update exactly these values. Therefore, the server can later selectively delete
exactly these n codeword symbols, leading to the same attack as in the first proposal.

Impossibility? Given the above failed attempts, it may even seem that truly efficient updates could be
inherently incompatible with efficient audits in PoR. If an update is efficient and only changes a small

2This requires that we can efficiently check the authenticity of the remotely stored data C, while supporting efficient updates
on it. This problem is solved by memory checking (see our survey of related work in Section 1.2).

3A variant of this idea was actually used by Juels and Kaliski [20] for extra efficiency in the static setting.
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subset of the server’s storage, then the server can always just ignore the update, thereby failing to maintain
knowledge of the latest version of the client data. All of the prior techniques appear ineffective against
such attack. More generally, any audit protocol which just checks a small subset of random locations of the
server’s storage is unlikely to hit any of the locations involved in the update, and hence will not detect such
cheating, meaning that it cannot be secure.4 However, this does not rule out the possibility of a very efficient
solution that relies on a more clever audit protocol, which is likelier to check recently updated areas of the
server’s storage and therefore detect such an attack. Indeed, this property will be an important component
in our actual solution.

1.1 Our Results and Techniques

Overview of Result. In this work, we give the first solution to dynamic PoR that allows for efficient
updates to client data. The client only keeps some short local state, and can execute arbitrary read/write
operations on any location within the data by running a corresponding protocol with the server. At any
point in time, the client can also initiate an audit protocol, which ensures that a passing server must have
complete knowledge of the latest version of the client data. The cost of any read/write/audit execution
in terms of server/client work and communication is only polylogarithmic in the size of the client data.
The server’s storage remains linear in the size of the client data. Therefore, our scheme is optimal in an
asymptotic sense, up to polylogarithmic factors. See Section 7 for a detailed efficiency analysis.

PoR via Oblivious RAM. Our dynamic PoR solution starts with the same idea as the first proposal
above, where the client redundantly encodes small blocks of her data individually to form the value C =
(c1, . . . , cL) ∈ ΣLn, consisting of L codeword blocks and `′ = Ln codeword symbols, as defined previously.
The goal is to then store C on the server in some “clever way” so that that the server cannot selectively
delete too many symbols within any single codeword block ci, even after observing the client’s read and write
executions (which access exactly these symbols). As highlighted by the second proposal, simply permuting
the locations of the codeword symbols of C is insufficient. Instead, our main idea it to store all of the
individual codeword symbols of C on the server using an oblivious RAM scheme.

Overview of ORAM. Oblivious RAM (ORAM), initially defined by Goldreich and Ostrovsky [14], allows
a client to outsource her memory to a remote server while allowing the client to perform random-access reads
and writes in a private way. More precisely, the client has some data D ∈ Σd, which she stores on the server
in some carefully designed privacy-preserving form, while only keeping a short local state. She can later run
efficient protocols with the server to read or write to the individual entries of D. The read/write protocols
of the ORAM scheme should be efficient, and the client/server work and communication during each such
protocol should be small compared to the size of D (e.g., polylogarithmic). A secure ORAM scheme not
only hides the content of D from the server, but also the access pattern of which locations in D the client is
reading or writing in each protocol execution. Thus, the server cannot discern any correlation between the
physical locations of its storage that it is asked to access during each read/write protocol execution and the
logical location inside D that the client wants to access via this protocol.

We review the literature and efficiency of ORAM schemes in Section 6. In our work, we will also always
use ORAM schemes that are authenticated, which means that the client can detect if the server ever sends
an incorrect value. In particular, authenticated ORAM schemes ensure that the most recent version of the
data is being retrieved in any accepting read execution, preventing the server from “rolling back” updates.

Construction of Dynamic PoR. A detailed technical description of our construction appears in Sec-
tion 5, and below we give a simplified overview. In our PoR construction, the client starts with data

4The above only holds when the complexity of the updates and the audit are both o(
√
`), where ` is the size of the data. See

Appendix A for a simple protocol of this form that archives square-root complexity.
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Figure 1: Our Construction

M ∈ Σ` which she splits into small message blocks M = (m1, . . . ,mL) with mi ∈ Σk where the block
size k � ` = Lk is only dependant on the security parameter. She then applies an error correcting code
Enc : Σk → Σn that can efficiently recover n

2 erasures to each message block individually, resulting in the
value C = (c1, . . . , cL) ∈ ΣLn where ci = Enc(mi). Finally, she initializes an ORAM scheme with the initial
data D = C, which the ORAM stores on the server in some clever privacy-preserving form, while keeping
only a short local state at the client.

Whenever the client wants to read or write to some location within her data, she uses the ORAM scheme
to perform the necessary reads/writes on each of the n relevant codeword symbols of C (see details in
Section 5). To run an audit, the client chooses t (≈ security parameter) random locations in {1, . . . , Ln}
and runs the ORAM read protocol t times to read the corresponding symbols of C that reside in these
locations, checking them for authenticity.

Catching Disregarded Updates. First, let us start with a sanity check, to explain how the above con-
struction can thwart a specific attack in which the server simply disregards the latest update. In particular,
such attack should be caught by a subsequent audit. During the audit, the client runs the ORAM pro-
tocol to read t random codeword symbols and these are unlikely to coincide with any of the n codeword
symbols modified by the latest update (recall that t and n are both small and independent of the data
size `). However, the ORAM scheme stores data on the server in a highly organized data-structure, and
ensures that the most recently updated data is accessed during any subsequent “read” execution, even for
an unrelated logical location. This is implied by ORAM security since we need to hide whether or not the
location of a read was recently updated or not. Therefore, although the audit executes the “ORAM read”
protocols on random logical locations inside C, the ORAM scheme will end up scanning recently updated
ares of the server’s actual storage and check them for authenticity, ensuring that recent updates have not
been disregarded.

Security and “Next-Read Pattern Hiding”. The high-level security intuition for our PoR scheme is
quite simple. The ORAM hides from the server where the various locations of C reside in its storage, even
after observing the access pattern of read/write executions. Therefore it is difficult for the server to reach a
state where it will fail on read executions for most locations within some single codeword block (lose data)
without also failing on too many read executions altogether (lose the ability to pass an audit).

Making the above intuition formal is quite subtle, and it turns out that standard notion of ORAM
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security does not suffice. The main issue is that that the server may be able to somehow delete all (or
most) of the n codeword symbols that fall within some codeword block ci = (C[j+ 1], . . . ,C[j+n]) without
knowing which block it deleted. Therefore, although the server will fail on any subsequent read if and only
if its location falls within the range {j + 1, . . . , j + n}, it will not learn anything about the location of the
read itself since it does not know the index j. Indeed, we will give an example of a contrived ORAM scheme
where such an attack is possible and our resulting construction of PoR using this ORAM is insecure.

We show, however, that the intuitive reasoning above can be salvaged if the ORAM scheme achieves a
new notion of security that we call next-read pattern hiding (NRPH), which may be of independent interest.
NRPH security considers an adversarial server that first gets to observe many read/write protocol executions
performed sequentially with the client, resulting in some final client configuration Cfin. The adversarial server
then gets to see various possibilities for how the “next read” operation would be executed by the client for
various distinct locations, where each such execution starts from the same fixed client configuration Cfin.5

The server should not be able to discern any relationship between these executions and the locations they
are reading. For example, two such “next-read” executions where the client reads two consecutive locations
should be indistinguishable from two executions that read two random and unrelated locations. This notion
of NRPH security will be used to show that server cannot reach a state where it can selectively fail to respond
on read queries whose location falls within some small range of a single codeword block (lose data), but still
respond correctly to most completely random reads (pass an audit).

Proving Security via an Extractor. As mentioned earlier, the security of PoR is formalized via an
extractor and we now give a high-level overview of how such an extractor works. In particular, we claim
that we can take any adversarial server that has a “good” chance of passing an audit and use the extractor
to efficiently recover the latest version of the client data from it. The extractor initializes an “empty array”
C. It then executes random audit protocols with the server, by acting as the honest client. In particular,
it chooses t random locations within the array and runs the corresponding ORAM read protocols. If the
execution of the audit is successful, the extractor fills in the corresponding values of C that it learned during
the audit execution. In either case, it then rewinds the server and runs a fresh execution of the audit,
repeating this step for several iterations.

Since the server has a good chance of passing a random audit, it is easy to show that the extractor can
eventually recover a large fraction, say > 3

4 , of the entries inside C by repeating this process sufficiently many
times. Because of the authenticity of the ORAM, the recovered values are the correct ones, corresponding to
the latest version of the client data. Now we need to argue that there is no codeword block ci within C for
which the extractor recovered fewer than 1

2 of its codeword symbols, as this would prevent us from applying
erasure decoding and recovering the underlying message block. Let FAILURE denote the above bad event.
If all the recovered locations (comprising > 3

4 fraction of the total) were distributed uniformly within C then
FAILURE would occur with negligible probability, as long as the codeword size n is sufficiently large in the
security parameter. Thus, intuitively, if the server does not perform a targeted attack, but randomly corrupt
codeword blocks, FAILURE would not happen. We can now rely on the NRPH security of the ORAM to
ensure that FAILURE also happens with negligible probability, even if the server tries to selectively corrupt
codeword blocks. We can think of the FAILURE event as a function of the locations queried by the extractor
in each audit execution, and the set of executions on which the server fails. If the malicious server can cause
FAILURE to occur, it means that it can distinguish the pattern of locations actually queried by the extractor
during the audit executions (for which the FAILURE event occurs) from a randomly permuted pattern of
locations (for which the FAILURE event does not occur with overwhelming probability). Therefore, a
targeted attack by the server causing FAILURE with more than negligible probability means that the server
can be used in a reduction to break the NRPH security. Note that the use of rewinding between the audit
executions of the extractor requires us to rely on NRPH security rather than just standard ORAM security.

The above presents the high-level intuition and is somewhat oversimplified. See Section 4 for the formal

5This is in contrast to the standard sequential operations where the client state is updated after each execution.
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definition of NRPH security and Section 5 for the formal description of our dynamic PoR scheme and a
rigorous proof of security.

Achieving Next-Read Pattern Hiding. We show that standard ORAM security does not generically
imply NRPH security, by giving a contrived scheme that satisfies the former but not the latter. Nevertheless,
many natural ORAM constructions in the literature do seem to satisfy NRPH security. In particular, we
examine the efficient ORAM construction of Goodrich and Mitzenmacher [16] and prove that (with minor
modifications) it is NRPH secure.

Contributions. We call our final scheme PORAM since it combines the techniques and security of PoR and
ORAM. In particular, other than providing provable dynamic cloud storage as was our main goal, our scheme
also satisfies the strong privacy guarantees of ORAM, meaning that it hides all contents of the remotely
stored data as well as the access pattern of which locations are accessed when. It also provides strong
authenticity guarantees (same as memory checking ; see Section 1.2), ensuring that any “read” execution
with a malicious remote server is guaranteed to return the latest version of the data (or detect cheating).

In brief, our contributions can be summarized as follows:

• We give the first asymptotically efficient solution to PoR for outsourced dynamic data, where a suc-
cessful audit ensures that the server knows the latest version of the client data. In particular:

– Client storage is small and independent of the data size.

– Server storage is linear in the data size, expanding it by only a small constant factor.

– Communication and computation of client and server during read, write, and audit executions
are polylogarithmic in the size of the client data.

• Our scheme also achieves strong privacy and authenticity guarantees, matching those of oblivious RAM
and memory checking.

• We present a new security notion called “next-read pattern hiding (NRPH)” for ORAM and a con-
struction achieving this new notion, which may be of independent interest.

We mention that the PORAM scheme is simple to implement and has low concrete efficiency overhead on
top of an underlying ORAM scheme with NRPH security. There is much recent and ongoing research activity
in instantiating/implementing truly practical ORAM schemes, which are likely to yield correspondingly
practical instantiations of our PORAM protocol.

1.2 Related Work

Proofs of retrievability for static data were initially defined and constructed by Juels and Kaliski [20],
building on a closely related notion called sublinear-authenticators of Naor and Rothblum [24]. Concurrently,
Ateniese et al. [1] defined another related primitive called provable data possession (PDP). Since then, there
has been much ongoing research activity on PoR and PDP schemes.

PoR vs. PDP. The main difference between PoR and PDP is the notion of security that they achieve.
A PoR audit guarantees that the server maintains knowledge of all of the client data, while a PDP audit
only ensures that the server is storing most of the client data. For example, in a PDP scheme, the server
may lose a small portion of client data (say 1 MB out of a 10 GB file) and may maintain an high chance of
passing a future audit.6 On a technical level, the main difference in most prior PDP/PoR constructions is

6An alternative way to use static PDP can also achieve full security, at the cost of requiring the server to read the entire
client data during an audit, but still minimizing the communication complexity. If the data is large, say 10 GB, this is vastly
impractical.
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that PoR schemes store a redundant encoding of the client data on the server. For a detailed comparison,
see Küpçü [22, 23].

Static Data. PoR and PDP schemes for static data (without updates) have received much research atten-
tion [28, 10, 7, 2], with works improving on communication efficiency and exact security, yielding essentially
optimal solutions. Another interesting direction has been to extend these works to the multi-server setting
[6, 8, 9] where the client can use the audit mechanism to identify faulty machines and recover the data from
the others.

Dynamic Data. The works of Ateniese et al. [3], Erway et al. [12] and Wang et al. [31] show how
to achieve PDP security for dynamic data, supporting efficient updates. This is closely related to work on
memory checking [5, 24, 11], which studies how to authenticate remotely stored dynamic data so as to allow
efficient reads/writes, while being able to verify the authenticity of the latest version of the data (preventing
the server from “rolling back” updates and using an old version). Unfortunately, these techniques alone
cannot be used to achieve the stronger notion of PoR security. Indeed, the main difficulty that we resolve
in this work, how to efficiently update redundantly encoded data, does not come up in the context of PDP.
Multi-server extensions of dynamic storage schemes exist as well [13].

A recent work of Stefanov et al. [30] considers PoR for dynamic data, but in a more complex setting
where an additional trusted “portal” performs some operations on behalf of the client, and can cache updates
for an extended period of time. It is not clear if these techniques can be translated to the basic client/server
setting, which we consider here. However, even in this modified setting, the complexity of the updates and
the audit in that work is proportional to square-root of the data size, whereas ours is polylogarithmic.

2 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. We identify efficient algorithms as
those running in (probabilistic) polynomial time in λ and their input lengths, and identify negligible quantities
(e.g., acceptable error probabilities) as negl(λ) = 1/λω(1), meaning that they are asymptotically smaller than

1/λc for every constant c > 0. For n ∈ N, we define the set [n]
def
= {1, . . . , n}. We use the notation (k mod n)

to denote the unique integer i ∈ {0, . . . , n− 1} such that i = k (mod n).

Erasure Codes. We say that (Enc,Dec) is an (n, k, d)Σ-code with efficient erasure decoding over an al-
phabet Σ if the original message can always be recovered from a corrupted codeword with at most d − 1
erasures. That is, for every message m = (m1, . . . ,mk) ∈ Σk giving a codeword c = (c1, . . . , cn) = Enc(m),
and every corrupted codeword c̃ = (c̃1, . . . , c̃n) such that c̃i ∈ {ci,⊥} and the number of erasures is
|{i ∈ [n] : c̃i = ⊥}| ≤ d − 1, we have Dec(c̃) = m. We say that a code is systematic if, for every
message m, the codeword c = Enc(m) contains m in the first k positions c1 = m1, . . . , ck = mk. A sys-
tematic variant of the Reed-Solomon code achieves the above for any integers n > k and any field Σ of size
|Σ| ≥ n with d = n− k + 1.

Virtual Memory. We think of virtual memory M, with word-size w and length `, as an array M ∈ Σ`

where Σ
def
= {0, 1}w. We assume that, initially, each location M[i] contains the special uninitialized symbol

0 = 0w. Throughout, we will think of ` as some large polynomial in the security parameter, which upper
bounds the amount of memory that can be used.

Outsourcing Virtual Memory. In the next two sections, we look at two primitives: dynamic PoR and
ORAM. These primitives allow a client to outsource some virtual memory M of length ` to a remote server,
while providing useful security guarantees. Reading and writing to some location of M now takes on the form
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of a protocol execution with the server. The goal is to provide security while preserving efficiency in terms of
client/server computation, communication, and the number of server-memory accesses per operation, which
should all be poly-logarithmic in `. We also want to optimize the size of the client storage (independent of
`) and server storage (not much larger than `).

We find this abstract view of outsourcing memory to be the simplest and most general to work with.
Any higher-level data-structures and operations (e.g., allowing appends/inserts to data or implementing
an entire file-system) can be easily done on top of this abstract notion of memory and therefore securely
outsourced to the remote server. Essentially, a file system employs a hard disk (which can be thought as
the virtual memory M), and then implements appropriate data structures to deal with directories, indexing,
and other operations. Just as the file system data structures reside on the hard disk itself, they all can
be outsourced as part of our virtual memory abstraction, as if one is outsourcing the complete hard disk.
Another alternative may be employing our system to outsource the actual files residing on the hard disk,
but keeping the metadata or data structures at the local machine, since they generally require much lighter
resources.

3 Dynamic PoR

A Dynamic PoR scheme consists of protocols PInit,PRead,PWrite, Audit between two stateful parties: a
client C and a server S. The server acts as the curator for some virtual memory M, which the client can
read, write and audit by initiating the corresponding interactive protocols:

• PInit(1λ, 1w, `): This protocol corresponds to the client initializing an (empty) virtual memory M with
word-size w and length `, which it supplies as inputs.

• PRead(i): This protocol corresponds to the client reading v = M[i], where it supplies the input i and
outputs some value v at the end.

• PWrite(i, v): This protocol corresponds to setting M[i] := v, where the client supplies the inputs i, v.

• Audit: This protocol is used by the client to verify that the server is maintaining the memory contents
correctly so that they remain retrievable. The client outputs a decision b ∈ {accept, reject}.

The client C in the protocols may be randomized, but we assume (w.l.o.g.) that the honest server S is
deterministic. At the conclusion of the PInit protocol, both the client and the server create some long-term
local state, which each party will update during the execution of each of the subsequent protocols. The
client may also output reject during the execution of the PInit,PRead,PWrite protocols, to denote that it
detected some misbehavior of the server. Note that we assume that the virtual memory is initially empty,
but if the client has some initial data, she can write it onto the server block-by-block immediately after
initialization. For ease of presentation, we may assume that the state of the client and the server always
contains the security parameter, and the memory parameters (1λ, 1w, `).

We now define the three properties of a dynamic PoR scheme: correctness, authenticity and retrievability.
For these definitions, we say that P = (op0, op1, . . . , opq) is a dynamic PoR protocol sequence if op0 =
PInit(1λ, 1w, `) and, for j > 0, opj ∈ {PRead(i), PWrite(i, v), Audit} for some index i ∈ [`] and value
v ∈ {0, 1}w.

Correctness. If the client and the server are both honest and P = (op0, . . . , opq) is some protocol sequence,
then we require the following to occur with probability 1 over the randomness of the client:

• Each execution of a protocol opj = PRead(i) results in the client outputting the correct value v = M[i],
matching what would happen if the corresponding operations were performed directly on a memory
M. More formally, if opj′ = PWrite(i, v) was the last PWrite operation on location i with j′ < j, then
opj = PRead(i) returns v. If no prior PWrite operation on location i exists, then opj = PRead(i) returns
0 (the initial value).
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• Each execution of the Audit protocol results in the decision b = accept.

Authenticity. We require that the client can always detect if any protocol message sent by the server de-
viates from honest behavior. More precisely, consider the following game AuthGameS̃(λ) between a malicious

server S̃ and a challenger:

• The malicious server S̃(1λ) specifies a valid protocol sequence P = (op0, . . . , opq).

• The challenger initializes a copy of the honest client C and the (deterministic) honest server S. It
sequentially executes op0, . . . , opq between C and the malicious server S̃ while, in parallel, also passing
a copy of every message from C to the honest server S.

• If, at any point during the execution of some opj , any protocol message given by S̃ differs from that of
S, and the client C does not output reject, the adversary wins and the game outputs 1. Else 0.

For any efficient adversarial server S̃, we require Pr[AuthGameS̃(λ) = 1] ≤ negl(λ). Note that authenticity
and correctness together imply that the client will always either read the correct value corresponding to the
latest contents of the virtual memory or reject whenever interacting with a malicious server.

Retrievability. Finally we define the main purpose of a dynamic PoR scheme, which is to ensure that the
client data remains retrievable. We wish to guarantee that, whenever the malicious server is in a state with
a reasonable probability δ of successfully passing an audit, he must know the entire content of the client’s
virtual memory M. As in “proofs of knowledge”, we formalize knowledge via the existence of an efficient
extractor E which can recover the value M given (black-box) access to the malicious server.

More precisely, we define the game ExtGameS̃,E(λ, p) between a malicious server S̃, extractor E , and
challenger:

• The malicious server S̃(1λ) specifies a protocol sequence P = (op0, . . . , opq). Let M ∈ Σ` be the correct
value of the memory contents at the end of honestly executing P .

• The challenger initializes a copy of the honest client C and sequentially executes op0, . . . , opq between C
and S̃. Let Cfin and S̃fin be the final configurations (states) of the client and malicious server at the end of
this interaction, including all of the random coins of the malicious server. Define the success-probability

Succ(S̃fin)
def
= Pr

[
S̃fin

Audit←→ Cfin = accept
]

as the probability that an execution of a subsequent Audit protocol between S̃fin and Cfin results in the
latter outputting accept. The probability is only over the random coins of Cfin during this execution.

• Run M′ ← E S̃fin(Cfin, 1
`, 1p), where the extractor E gets black-box rewinding access to the malicious

server in its final configuration S̃fin, and attempts to extract out the memory contents as M′.7

• If Succ(S̃fin) ≥ 1/p and M′ 6= M then output 1, else 0.

We require that there exists a probabilistic-poly-time extractor E such that, for every efficient malicious
server S̃ and every polynomial p = p(λ) we have Pr[ExtGameS̃,E(λ, p) = 1] ≤ negl(λ).

The above says that whenever the malicious server reaches some state S̃fin in which it maintains a δ ≥ 1/p
probability of passing the next audit, the extractor E will be able to extract out the correct memory contents
M from S̃fin, meaning that the server must retain full knowledge of M in this state. The extractor is efficient,
but can run in time polynomial in p and the size of the memory `.

A Note on Adaptivity. We defined the above authenticity and retrievability properties assuming that
the sequence of read/write operations is adversarial, but is chosen non-adaptively, before the adversarial
server sees any protocol executions. Even though an adaptive security definition is preferable (and matches

7This is similar to the extractor in zero-knowledge proofs of knowledge. In particular E can execute protocols with the
malicious server in its state S̃fin and rewind it back this state at the end of the execution.
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previous work in dynamic provable data possession setting [12]), standard ORAM security definitions in
prior works have been non-adaptive. Thus, to be consistent with the ORAM literature, we have presented
non-adaptive versions of the definitions above. Nevertheless, we note that our final results also achieve
adaptive security, where the attacker can choose the sequence of operations opi adaptively after seeing the
execution of previous operations, if the underlying ORAM satisfies adaptive security. Indeed, most prior
ORAM solutions seem to do so, but it was never included in their analysis.

4 Oblivious RAM with Next-Read Pattern Hiding

An ORAM consists of protocols (OInit,ORead,OWrite) between a client C and a server S, with the same
syntax as the corresponding protocols in PoR. We will also extend the syntax of ORead and OWrite to allow
for reading/writing from/to multiple distinct locations simultaneously. That is, for arbitrary t ∈ N, we define
the protocol ORead(i1, . . . , it) for distinct indices i1, . . . , it ∈ [`], in which the client outputs (v1, . . . , vt) corre-
sponding to reading v1 = M[i1], . . . , vt = M[it]. Similarly, we define the protocol OWrite(it, . . . , it; v1, . . . , vt)
for distinct indices i1, . . . , it ∈ [`], which corresponds to setting M[i1] := v1, . . . ,M[it] := vt.

We say that P = (op0, . . . , opq) is an ORAM protocol sequence if op0 = OInit(1λ, 1w, `) and, for j > 0,
opj is a valid (multi-location) read/write operation.

We require that an ORAM construction needs to satisfy correctness and authenticity, which are defined
the same way as in PoR.8 For privacy, we define a new property called next-read pattern hiding. For
completeness, we also define the standard notion of ORAM pattern hiding in Appendix B.

Next-Read Pattern Hiding. Consider an honest-but-curious server A who observes the execution of
some protocol sequence P with a client C resulting in the final client configuration Cfin. At the end of this
execution, A gets to observe how Cfin would execute the next read operation ORead(i1, . . . , it) for various
different t-tuples (i1, . . . , it) of locations, but always starting in the same client state Cfin. We require that A
cannot observe any correlation between these next-read executions and their locations, up to equality. That
is, A should not be able to distinguish if Cfin instead executes the next-read operations on permuted locations
ORead(π(i1), . . . , π(it)) for a permutation π : [`]→ [`].

More formally, we define NextReadGamebA(λ), for b ∈ {0, 1}, between an adversary A and a challenger:

• The attacker A(1λ) chooses an ORAM protocol sequence P1 = (op0, . . . , opq1). It also chooses a
sequence P2 = (rop1, . . . , ropq2) of valid multi-location read operations, where each operation is of
the form ropj = ORead(ij,1, . . . , ij,tj ) with tj distinct locations. Lastly, it chooses a permutation
π : [`]→ [`]. For each ropj in P2, define a permuted version rop′j := ORead(π(ij,1), . . . , π(ij,tj )). The
game now proceeds in two stages.

• Stage I. The challenger initializes the honest client C and the (deterministic) honest server S. It
sequentially executes the protocols P1 = (op0, . . . , opq1) between C and S. Let Cfin,Sfin be the final
configuration of the client and server at the end.

• Stage II. For each j ∈ [q2]: challenger either executes the original operation ropj if b = 0, or the
permuted operation rop′j if b = 1, between C and S. At the end of each operation execution it resets
the configuration of the client and server back to Cfin,Sfin respectively, before the next execution.

• The adversary A is given the transcript of all the protocol executions in stages I and II, and outputs a
bit b̃ which we define as the output of the game. Note that, since the honest server S is deterministic,
seeing the protocol transcripts between S and C is the same as seeing the entire internal state of S at
any point time.

8Traditionally, authenticity is not always defined/required for ORAM. However, it is crucial for our use. As noted in several
prior works, it can often be added at almost no cost to efficiency. It can also be added generically by running a memory checking
scheme on top of ORAM. See Section 6.4 for details.
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We require that, for every efficient A, we have∣∣Pr[NextReadGame0
A(λ) = 1]− Pr[NextReadGame1

A(λ) = 1]
∣∣ ≤ negl(λ).

5 PORAM: Dynamic PoR via ORAM

We now give our construction of dynamic PoR, using ORAM. Since the ORAM security properties are
preserved by the construction as well, we happen to achieve ORAM and dynamic PoR simultaneously.
Therefore, we call our construction PORAM.

Overview of Construction. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ systematic code with efficient
erasure decoding over the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w). Our
construction of dynamic PoR will interpret the memory M ∈ Σ` as consisting of L = `/k consecutive message
blocks, each having k alphabet symbols (assume k is small and divides `). The construction implicitly maps
operation on M to operations on encoded memory C ∈ (Σ)`code=Ln, which consists of L codeword blocks
with n alphabet symbols each. The L codeword blocks C = (c1, . . . , cL) are simply the encoded versions of
the corresponding message blocks in M = (m1, . . . ,mL) with cq = Enc(mq) for q ∈ [L]. This means that,
for each i ∈ [`], the value of the memory location M[i] can only affect the values of the encoded-memory
locations C[j + 1], . . . ,C[j + n] where j = n · bi/kc. Furthermore, since the encoding is systematic, we have
M[i] = C[j + u] where u = (i mod k) + 1. To read the memory location M[i], the client will use ORAM
to read the codeword location C[j + u]. To write to the memory location M[i] := v, the client needs to
update the entire corresponding codeword block. She does so by first using ORAM to read the corresponding
codeword block c = (C[j+ 1], . . . ,C[j+n]), and decodes to obtain the original memory block m = Dec(c).9

She then locally updates the memory block by setting m[u] := v, re-encodes the updated memory block
to get c′ = (c1, . . . , cn) := Enc(m) and uses the ORAM to write c′ back into the encoded memory, setting
C[j + 1] := c′1, . . . ,C[j + n] := c′n.

The Construction. Our PORAM construction is defined for some parameters n > k, t ∈ N. Let O =
(OInit,ORead,OWrite) be an ORAM. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ systematic code with
efficient erasure decoding over the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w).

• PInit(1λ, 1w, `): Assume k divides ` and let `code := n · (`/k). Run the OInit(1λ, 1w, `code) protocol.

• PRead(i): Let i′ := n · bi/kc+ (i mod k) + 1 and run the ORead(i′) protocol.

• PWrite(i, v): Set j := n · bi/kc and u := (i mod k) + 1.

– Run ORead(j + 1, . . . , j + n) and get output c = (c1, . . . , cn).

– Decode m = (m1, . . . ,mk) = Dec(c).

– Modify position u of m by locally setting mu := v. Re-encode the modified message-block m by
setting c′ = (c′1, . . . , c

′
n) := Enc(m).

– Run OWrite(j + 1, . . . , j + n; c′1, . . . , c
′
n).

• Audit: Pick t distinct indices j1, . . . , jt ∈ [`code] at random. Run ORead(j1, . . . , jt) and return accept

iff the protocol finished without outputting reject.

9We can skip this step if the client already has the value m stored locally e.g. from prior read executions.
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If, any ORAM protocol execution in the above scheme outputs reject, the client enters a special rejection
state in which it stops responding and automatically outputs reject for any subsequent protocol execution.

It is easy to see that if the underlying ORAM scheme used in the above PORAM construction is secure in
the standard sense of ORAM (see Appendix B) then the above construction preserves this ORAM security,
hiding which locations are being accessed in each operation. As our main result, we now prove that if the
ORAM scheme satisfies next-read pattern hiding (NRPH) security then the PORAM construction above is
also a secure dynamic PoR scheme.

Theorem 1. Assume that O = (OInit,ORead,OWrite) is an ORAM with next-read pattern hiding (NRPH)
security, and we choose parameters k = Ω(λ), k/n = (1 − Ω(1)), t = Ω(λ). Then the above scheme
PORAM = (PInit,PRead,PWrite,Audit) is a dynamic PoR scheme.

5.1 Proof of Theorem 1

The correctness and authenticity properties of PORAM follow immediately from those of the underlying
ORAM scheme O. The main challenge is to show that the retrievability property holds. As a first step, let
us describe the extractor.

The Extractor. The extractor E S̃fin(Cfin, 1
`, 1p) works as follows:

(1) Initialize C := (⊥)`code where `code = n(`/k) to be an empty vector.

(2) Keep rewinding and auditing the server by repeating the following step for s = max(2`code, λ) · p times:
Pick t distinct indices j1, . . . , jt ∈ [`code] at random and run the protocol ORead(j1, . . . , jt) with S̃fin,
acting as Cfin as in the audit protocol. If the protocol is accepting and Cfin outputs (v1, . . . , vt), set
C[j1] := v1, . . . ,C[jt] := vt. Rewind S̃fin, Cfin to their state prior to this execution for the next iteration.

(3) Let δ
def
= (1 + k

n)/2. If the number of “filled in” values in C is |{j ∈ [`code] : C[j] 6= ⊥}| < δ · `code then
output fail1. Else interpret C as consisting of L = `/k consecutive codeword blocks C = (c1, . . . , cL)
with each block cj ∈ Σn. If there exists some index j ∈ [L] such that the number of “filled” in values in
codeword block cj is |{i ∈ [n] : cj [i] 6= ⊥}| < k then output fail2. Otherwise, apply erasure decoding
to each codeword block cj , to recover mj = Dec(cj), and output M = (m1, . . . ,mL) ∈ Σ`.10

Proof by Contradiction. Assume that PORAM does not satisfy the retrievability property with the above
extractor E . Then there exists some efficient adversarial server S̃ and some polynomials p = p(λ), p′ = p′(λ)
such that, for infinitely many values λ ∈ N, we have:

Pr[ExtGameS̃,E(λ, p(λ)) = 1] >
1

p′(λ)
(1)

Using the same notation as in the definition of ExtGame, let S̃fin, Cfin be the final configurations of the
malicious server S̃ and client C, respectively, after executing the protocol sequence P chosen by the server at
the beginning of the game, and let M be the correct value of the memory contents resulting from P . Then
(1) implies

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) 6= M

]
>

1

p′(λ)
(2)

where the probability is over the coins of C, S̃ which determine the final configuration S̃fin, Cfin and the coins
of the extractor E . We now slowly refine the above inequality until we reach a contradiction, showing that
the above cannot hold.

10The failure event fail1 and the choice of δ is only intended to simplify the analysis of the extractor. The only real bad event
from which the extractor cannot recover is fail2.
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Extractor can only fail with {fail1, fail2}. Firstly, we argue that at the conclusion of ExtGame, the
extractor must either output the correct memory contents M or must fail with one of the error messages
{fail1, fail2}. In other words, it can always detect failure and never outputs an incorrect value M′ 6= M. This
follows from the authenticity of the underlying ORAM scheme which guarantees that the extractor never
puts any incorrect value into the array C.

Lemma 1. Within the execution of ExtGameS̃,E(λ, p), we have:

Pr[E S̃fin(Cfin, 1
`, 1p) 6∈ {M, fail1, fail2}] ≤ negl(λ).

Proof of Lemma. The only way that the above bad event can occur is if the extractor puts an incorrect value
into its array C which does not match encoded version of the correct memory contents M. In particular, this
means that one of the audit protocol executions (consisting of an ORead with t random locations) initiated
by the extractor E between the malicious server S̃fin and the client Cfin causes the client to output some
incorrect value which does not match correct memory contents M, and not reject. By the correctness of the
ORAM scheme, this means that the the malicious server must have deviated from honest behavior during
that protocol execution, without the client rejecting. Assume the probability of this bad event happening is
ρ. Since the extractor runs s = max(2`code, λ) · p = poly(λ) such protocol executions with rewinding, there
is at least ρ/s = ρ/poly(λ) probability that the above bad event occurs on a single random execution of the
audit with S̃fin. But this means that S̃ can be used to break the authenticity of ORAM with advantage
ρ/poly(λ), by first running the requested protocol sequence P and then deviating from honest behavior
during a subsequent ORead protocol without being detected. Therefore, by the authenticity of ORAM, we
must have ρ = negl(λ).

Combining the above with (2) we get:

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) ∈ {fail1, fail2}

]
>

1

p′(λ)
− negl(λ) (3)

Extractor can indeed only fail with fail2. Next, we refine equation (3) and claim that the extractor is
unlikely to reach the failure event fail1 and therefore must fail with fail2.

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (4)

To prove the above, it suffices to prove the following lemma, which intuitively says that if S̃fin has a good
chance of passing an audit, then the extractor must be able to extract sufficiently many values inside C
and hence cannot output fail1. Remember that fail1 occurs if the extractor does not have enough values to
recover the whole memory, and fail2 occurs if the extractor does not have enough values to recover some
message block.

Lemma 2. For any (even inefficient) machine S̃fin and any polynomial p = p(λ) we have:

Pr[E S̃fin(Cfin, 1
`, 1p) = fail1 | Succ(S̃fin) ≥ 1/p] ≤ negl(λ).

Proof of Lemma. Let E be the bad event that fail1 occurs. For each iteration i ∈ [s] within step (2) of the
execution of E let us define:

• Xi to be an indicator random variable that takes on the value Xi = 1 iff the ORead protocol execution
in iteration i does not reject.

• Gi to be a random variable that denotes the subset {j ∈ [`code] : C[j] 6= ⊥} of filled-in positions in the
current version of C at the beginning of iteration i.
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• Yi to be an indicator random variable that takes on the value Yi = 1 iff |Gi| < δ · `code and all of the
locations that E chooses to read in iteration i happen to satisfy j1, . . . , jt ∈ Gi.

If Xi = 1 and Yi = 0 in iteration i, then at least one position of C gets filled in so |Gi+1| ≥ |Gi| + 1.
Therefore the bad event E only occurs if fewer than δ`code of the Xi take on a 1 or at least one Yi takes on
a 1, giving us:

Pr[E] ≤ Pr

[
s∑
i=1

Xi < δ`code

]
+

s∑
i=1

Pr[Yi = 1]

For each i, we can bound Pr[Yi = 1] ≤
(bδ`codec

t

)
/
(
`code
t

)
≤ δt. If we define X = 1

s

∑s
i=1Xi we also get:

Pr

[
s∑
i=1

Xi < δ`code

]
≤ Pr

[
X < 1/p− (1/p− δ`code

s
)

]
≤ exp(−2s(1/p− δ`code/s)

2)

≤ exp(−s/p) ≤ 2−λ

where the second inequality follows by the Chernoff-Hoeffding bound. Therefore Pr[E] ≤ 2−λ+sδt = negl(λ)
which proves the lemma.

Use Estimated Success Probability. Instead of looking at the true success probability Succ(S̃fin),

which we cannot efficiently compute, let us instead consider an estimated probability S̃ucc(S̃fin) which is
computed in the context of ExtGame by sampling 2λ(p(λ))2 different “audit protocol executions” between
S̃fin and Cfin and seeing on which fraction of them does S̃ succeed (while rewinding S̃fin and Cfin after each
one). Then, by the Chernoff-Hoeffding bound, we have:

Pr

[
S̃ucc(S̃fin) ≤ 1

2p(λ)

∣∣∣∣ Succ(S̃fin) >
1

p(λ)

]
≤ e−λ = negl(λ)

Combining the above with (4), we get:

Pr

[
S̃ucc(S̃fin) > 1

2p(λ)

∧E S̃fin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (5)

Assume Passive Attacker. We now argue that we can replace the active attacker S̃ with an efficient
passive attacker Ŝ who always acts as the honest server S in each protocol execution within the protocol
sequence P and the subsequent audit, but can selectively fail by outputting ⊥ at any point. In particular
Ŝ just runs a copy of S̃ and the honest server S concurrently, and if S̃ deviates from the execution of S, it
just outputs ⊥. Then we claim that, within the context of ExtGameŜ,E , we have:

Pr

[
S̃ucc(Ŝfin) > 1

2p(λ)

∧E Ŝfin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (6)

The above probability is equivalent for Ŝ and S̃, up to the latter deviating from the protocol execution with-
out being detected by the client, either during the protocol execution of P or during one of the polynomially

many executions of the next read used to compute S̃ucc(S̃) and E S̃ . The probability that this occurs is
negligible, by authenticity of ORAM.
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Permuted Extractor. We now aim to derive a contradiction from (6). Intuitively, if fail2 occurs (but
fail1 does not), it means that there is some codeword block cj such that Ŝfin is significantly likelier to fail on
a next-read query for which at least one location falls inside cj , than it is for a “random” read query. This
would imply an attack on next-read pattern hiding. We now make this intuition formal. Consider a modified
“permuted extractor” Eperm who works just like E with the exception that it permutes the locations used in
the ORead executions during the extraction process. In particular Eperm makes the following modifications
to E :

• At the beginning, Eperm chooses a random permutation π : [`code]→ [`code].

• During each of the s iterations of the audit protocol, Eperm chooses t indices j1, . . . , jt ∈ [`code] at random
as before, but it then runs ORead(π(j1), . . . , π(jt)) on the permuted values. If the protocol is accepting
the extractor Eperm still “fills-in” the original locations: C[j1], . . . ,C[jt] (since we are only analyzing the
event fail2 we do not care about the values in these locations but only if they are filled in or not).

Now we claim that an execution of ExtGame the permuted extractor Eperm is still likely to result in the failure
event fail2. This follows from “next-read pattern hiding” which ensures that permuting the locations inside
of the ORead executions (with rewinding) is indistinguishable.

Lemma 3. The following holds within ExtGameŜ,Eperm
:

Pr

[
S̃ucc(Ŝfin) > 1

2p(λ)

∧E Ŝfin
perm(Cfin, 1

`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (7)

Proof of Lemma. Assume that (7) does not hold. Then we claim that there is an adversary A with non-
negligible distinguishing advantage in NextReadGamebA(λ) against the ORAM.

The adversary A runs Ŝ who chooses a PoR protocol sequence P1 = (op0, . . . , opq2), and A translates
this to the appropriate ORAM protocol sequence, as defined by the PORAM scheme. Then A chooses its
own sequence P2 = (rop1, . . . , ropq2) of sufficiently many read operations ORead(i1, . . . , it) where i1, . . . , it ∈
[`code] are random distinct indices. It then passes P1, P2 to its challenger and gets back the transcripts of
the protocol executions for stages (I) and (II) of the game.

The adversary A then uses the client communication from the stage (I) transcript to run Ŝ, getting it into

some state Ŝfin. It then uses the stage (II) transcripts, to compute E Ŝfin(Cfin, 1
`, 1p)

?
= fail2 and to estimate

S̃ucc(Ŝfin), without knowing the client state Cfin. It does so just by checking on which executions does Ŝfin

abort with ⊥ and which it runs to completion (here we use that Ŝ is semi-honest and never deviates beyond

outputting ⊥). Lastly A outputs 1 iff the emulated extraction E Ŝfin(Cfin, 1
`, 1p) = fail2 and S̃ucc(Ŝfin) ≥ 1

2p(λ) .

Let b be the challenger’s bit in the “next-read pattern hiding game”. If b = 0 (not permuted) then

A perfectly emulates the distribution of E Ŝfin(Cfin, 1
`, 1p)

?
= fail2 and the estimation of S̃ucc(Ŝfin) so, by

inequality (6):
Pr[NextReadGame0

A(λ) = 1] ≥ 1/p′(λ)− negl(λ).

If b = 1 (permuted) then A perfectly emulates the distribution of the permuted extractor E Ŝfin
perm(Cfin, 1

`, 1p)
?
=

fail2 and the estimation of S̃ucc(Ŝfin) since, for the latter, it does not matter whether random reads are
permuted or not. Therefore, since (7) is false by assumption, we have

Pr[NextReadGame1
A(λ) = 1] ≤ 1/p′(λ)− µ(λ)

where µ(λ) is non-negligible. This means that the distinguishing advantage of the passive attacker A is
non-negligible in the next-read pattern hiding game, which proves the lemma.

Contradiction. Finally, we present an information-theoretic argument showing that, when using the
permuted extractor Eperm, the probability of fail2 is negligible over the choice of the permutation π. Together
with inequality (7), this gives us a contradiction.
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Lemma 4. For any (possibly unbounded) S̃, we have

Pr

[
Succ( ˜̃Sfin) > 1

2p(λ)

∧E S̃fin
perm(Cfin, 1

`, 1p) = fail2

]
= negl(λ).

Proof of Lemma. Firstly, note that an equivalent way of thinking about Eperm is to have it issue random (un-
permuted) read queries just like E to recover C, but then permute the locations of C via some permutation
π : [`code] → [`code] before testing for the event fail2. This is simply because we have the distributional
equivalence (π(random), random) ≡ (random, π(random)), where random represents the randomly chosen
locations for the audit and π is a random permutation. Now, with this interpretation of Eperm, the event fail2
occurs only if (I) the un-permuted C contains more than δ fraction of locations with filled in (non ⊥) values
so that fail1 does not occur, and (II) the permuted version (c1, . . . , cL) = C[π(1)], . . . ,C[π(`code)] contains
some codeword block cj with fewer than k/n fraction of filled in (non ⊥) values.

We now show that, conditioned on (I) the probability of (II) is negligible over the random choice of π.
Fix some index j ∈ [L] and let us bound the probability that cj is the “bad” codeword block with fewer than
k filled in values. Let X1, X2, . . . , Xn be random variables where Xi is 1 if cj [i] 6= ⊥ and 0 otherwise. Let

X
def
= 1

n

∑n
i=1Xi. Then, over the randomness of π, the random variables X1, . . . , Xn are sampled without

replacement from a population of `code values (location in C), at least δ`code of which are 1 ( 6= ⊥) and the
rest are 0 (= ⊥). Therefore, by Hoeffding’s bound for sampling from finite populations without replacement
(See section 6 of [19]), we have:

Pr[cj is bad ] = Pr[X < k/n] = Pr[X < δ − (δ − k/n)]

≤ exp(−2n(δ − k/n)2) = negl(λ)

By taking a union-bound over all codeword blocks cj , we can bound the probability in equation (7) by∑`/k
j=1 Pr[cj is bad ] ≤ negl(λ).
We have already shown that fail1 only occurs with negligible probability. We now showed that fail2 for the

permuted extractor also occurs with negligible probability, while the adversary succeeds with non-negligible
probability.

Combining the above lemma with equation (7), we get a contradiction, showing that the assumption
in equation (1) cannot hold. Thus, as long as the adversary succeeds with non-negligible probability dur-
ing audits, the extractor will also succeed with non-negligible probability in extracting the whole memory
contents correctly.

6 ORAM Instantiation

The notion of ORAM was introduced by Goldreich and Ostrovsky [14], who also introduced the so-called
hierarchical scheme having the structure seen in Figures 1 and 6.2. Since then several improvements to the
hierarchical scheme have been given, including improved rebuild phases and the use of advanced hashing
techniques [32, 27, 16].

We examine a particular ORAM scheme of Goodrich and Mitzenmacher [16] and show that (with minor
modifications) it satisfies next-read pattern hiding security. Therefore, this scheme can be used to instantiate
our PORAM construction. We note that most other ORAM schemes from the literature that follow the
hierarchical structure also seemingly satisfy next-read pattern hiding, and we only focus on the above
example for concreteness. However, in Appendix C, we show that it is not the case that every ORAM
scheme satisfies next-read pattern hiding, and in fact give an example of a contrived scheme which does not
satisfy this notion and makes our construction of PORAM completely insecure. We also believe that there
are natural schemes, such as the ORAM of Shi et al. [29], which do not satisfy this notion. Therefore,
next-read pattern hiding is a meaningful property beyond standard ORAM security and must be examined
carefully.
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Overview. We note that ORAM schemes are generally not described as protocols, but simply as a data
structure in which the client’s encrypted data is stored on the server. Each time that a client wants to
perform a read or write to some address i of her memory, this operation is translated into a series of
read/write operations on this data structure inside the server’s storage. In other words, the (honest) server
does not perform any computation at all during these ‘protocols’, but simply allows the client to access
arbitrary locations inside this data structure.

Most ORAM schemes, including the one we will use below, follow a hierarchical structure. They maintain
several levels of hash tables on the server, each holding encrypted address-value pairs, with lower tables
having higher capacity. The tables are managed so that the most recently accessed data is kept in the top
tables and the least recently used data is kept in the bottom tables. Over time, infrequently accessed data
is moved into lower tables (obliviously).

To write a value to some address, just insert the encrypted address-value pair in the top table. To read
the value at some address, one hashes the address and checks the appropriate position in the top table. If it
is found in that table, then one hides this fact by sequentially checking random positions in the remaining
tables. If it is not found in the top table, then one hashes the address again and checks the second level table,
continuing down the list until it is found, and then accessing random positions in the remaining tables. Once
all of the tables have been accessed, the found data is written into the top table. To prevent tables from
overflowing (due to too many item insertions), there are additional periodic rebuild phases which obliviously
moves data from the smaller tables to larger tables further down.

Security Intuition. The reason that we always write found data into the top table after any read, is
to protect the privacy of repeatedly reading the same address, and ensuring that this looks the same as
reading various different addresses. In particular, reading the same address twice will not need to access the
same locations on the server, since after the first read, the data will already reside in the top table, and the
random locations will be read at lower tables.

At any point in time, after the server observes many read/write executions, any subsequent read operation
just accesses completely random locations in each table, from the point of view of the server. This is the
main observation needed to argue standard pattern hiding. For next-read pattern hiding, we notice that
we can extend the above to any set of q distinct executions of a subsequent read operation with distinct
addresses (each execution starting in the same client/server state). In particular, each of the q operations
just accesses completely random locations in each table, independently of the other operations, from the
point of view of the server.

One subtlety comes up when the addresses are not completely distinct from each other, as is the case in
our definition where each address can appear in multiple separate multi-read operations. The issue is that
doing a read operation on the same address twice with rewinding will reveal the level at which the data
for that address is stored, thus revealing some information about which address is being accessed. One can
simply observe at which level do the accesses begin to differ in the two executions. We fix this issue by
modifying a scheme so that, instead of accessing freshly chosen random positions in lower tables once the
correct value is found, we instead access pseudorandom positions that are determined by the address being
read and the operation count. That way, any two executions which read the same address starting from the
same client state are exactly the same and do not reveal anything beyond this. Note that, without state
rewinds, this still provides regular pattern hiding.

6.1 Technical Tools

Our construction uses the standard notion of a pseudorandom-function (PRF) where F (K,x) denote the
evaluation of the PRF F on input x with key K. We also rely on a symmetric-key encryption scheme secure
against chosen-plaintext attacks.
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Encrypted cuckoo table. An encrypted cuckoo table [26, 21] consists of three arrays (T1, T2, S) that hold
ciphertexts of some fixed length. The arrays T1 and T2 are both of size m and serve as cuckoo-hash tables
while S is an array of size s and serves as an auxiliary stash. The data structure uses two hash functions
h1, h2 : [`] → [m]. Initially, all entries of the arrays are populated with independent encryptions of a
special symbol ⊥. To retrieve a ciphertext associated with an address i, one decrypts all of the ciphertexts
in S, as well as the ciphertexts at T1[h1[i]] and T2[h2[i]] (thus at most s+ 2 decryptions are performed). If
any of these ciphertexts decrypts to a value of the form (i, v), then v is the returned output. To insert
an address-value pair (i, v), encrypt it and write the ciphertext ct to position T1[h1(i)], retrieving whatever
ciphertext ct1 was there before. If the original ciphertext ct1 decrypts to ⊥, then stop. Otherwise, if ct1
decrypts to a pair (j, w), then re-encrypt the pair and write the resulting ciphertext to T2[h2(j)], again
retrieving whatever ciphertext ct2 was there before. If ct2 decrypts to ⊥, then stop, and otherwise continue
this process iteratively with ciphertexts ct3, ct4, . . .. If this process continues for t = c log n steps, then ‘give
up’ and just put the last evicted ciphertext ctt into the first available spot in the stash S. If S is full, then
the data structure fails.

We will use the following result sketched in [16]: If m = (1 + ε)n for some constant ε > 0, and h1, h2 are
random functions, then after n items are inserted, the probability that S has k or more items written into it
is O(1/nk+2). Thus, if S has at least λ slots, then the probability of a failure after n insertions is negligible
in λ.

Oblivious table rebuilds. We will assume an oblivious protocol for the following task. At the start of the
protocol, the server holds encrypted cuckoo hash tables C1, . . . , Cr. The client has two hash functions h1, h2.
After the oblivious interaction, the server holds a new cuckoo hash table C ′r that results from decrypting
the data in C1, . . . , Cr, deleting data for duplicated locations with preference given to the copy of the data
in the lowest index table, encrypting each index-value pair again, and then inserting the ciphertexts into C ′r
using h1, h2.

Implementing this task efficiently and obliviously is an intricate task. See [16] and [27] for different
methods, which adapt the usage of oblivious sorting first introduced in [14].

6.2 ORAM Scheme

We can now describe the scheme of Goodrich and Mitzenmacher [16], with our modifications for next-read
pattern hiding. As ingredients, this scheme will use a PRF F and an encryption scheme (Enc,Dec). A
visualization of the server’s data structures is given in Figure 6.2.

OInit(1λ, 1w, `): Let L the smallest integer such that 2L > `. The client chooses 2L random keys K1,1,
K1,2, . . . ,KL,1,KL,2 and 2L additional random keys R1,1, R1,2, . . . , RL,1, RL,2 to be used for pseudo-
random functions, and initializes a counter ctr to 0. It also selects an encryption key for the IND-CPA
secure scheme. It instructs the server to allocate the following data structures:

• An empty array A0 that will change size as it is used.

• L empty cuckoo hash tables C1, . . . , CL where the parameters in Cj are adjusted to hold 2j data
items with a negligible (in λ) probability of overflow when used with random hash functions.

The client state consists of all of the keys (Kj,0,Kj,1)j∈[L], (Rj,0, Rj,1)j∈[L], the encryption key, and ctr.

ORead(i1, . . . , it): The client starts by initializing an array found of t flags to false. For each index ij to
be read, the client does the following. For each level k = 1, . . . , L, the client executes

• Let Ck = (T
(k)
1 , T

(k)
2 , S(k))

• If found[j] = false, read and decrypt all of S(k), T
(k)
1 [F (Kk,1, ij)] and T

(k)
2 [F (Kk,2, ij)]. If the data

is in any of these slots, set found[j] to true and remember the value as vj .

18



• Else, if found[j] = true, then instead read all of S(k), T
(k)
1 [F (Rk,1, ij‖ctr)] and T

(k)
2 [F (Rk,2, ij‖ctr)]

and ignore the results. Note that the counter value is used to create random reads when the state
is not reset, while providing the same random values if the state is reset.

Finally, it encrypts and appends (ij , vj) to the end of A0 and continues to the next index ij+1. We note
that above, when accessing a table using the output of F , we are interpreting the bit string output by
F as a random index from the appropriate range.

After all the indices have been read and written to A0, the client initiates a rebuild phase, the description
of which we defer for now.

OWrite(i1, . . . , it; v1, . . . , vt): The client encrypts and writes (ij , vj) into A0 for each j, then initiates a
rebuild phase, described below.

...
A0

S(1)

S(2)

S(3)

S(L)

T(1)1

T(1)2

T(2)1

T(2)2

T(3)1

T(3)2

T(L)1

T(L)2

Figure 2: Server data structures in the ORAM instantiation.

Rebuild phase. We complete the scheme description by describing a rebuild phase, which works as follows.
The client repeats the following process until A0 is empty:

• Increment ctr.

• Remove and decrypt an item from A0, calling the result (j, v).

• Let r ≥ 0 be the largest integer such that 2r divides (ctr mod 2L).

• Select new keys Kr,1,Kr,2 and use the functions F (Kr,1, ·) and F (Kr,2, ·) as h1 and h2 to obliviously
build a new cuckoo table C ′r holding the removed item (j, v) and all of the data items in C1, . . . , Cr−1,
freshly re-encrypted and with duplicates removed.

• Then, for j = 1 to r − 1, set Kj,1,Kj,2 to fresh random keys and set the cuckoo tables C1, . . . , Cr to be
new, empty tables and Cr to be C ′r.

Note that the remaining tables Cr+1, . . . , CL are not touched.
We can implement the rebuild phase using the any of the protocols (with small variations) from [16, 17].

The most efficient gives an amortized overhead of log ` operations for all rebuilds, assuming that the client
can temporarily locally store `δ memory slots during the protocol (but the client does need to store them
between executions of the protocol). If we only allow the client to store a constant number of slots at any
one time, then the we incur an overhead of log2 `. In either case the worst-case overhead is O(`). Using
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the de-amortization techniques from [17, 25], we can achieve worst-case complexity of log2 `, at the cost of
doubling the server storage. This technique was analyzed in the original ORAM security setting, but it is
not hard to extend our proof to show that it preserves next-read pattern hiding as well.

6.3 Next-Read Pattern Hiding

Theorem 2. Assuming that F is a secure PRF, and the underlying encryption scheme is chosen-plaintext
secure, then the scheme O described above is next-read pattern hiding.

Proof. We show that for any efficient adversary A, the probabilities that A outputs 1 when playing either
NextReadGame0

A or NextReadGame1
A differs by only a negligible amount. In these games, the adversary A

provides two tuples of operations P1 = (op1, . . . , opq1) and P2 = (rop1, . . . , ropq2), the latter being all multi-
reads, and a permutation π on [`]. Then in NextReadGame0

A, A is given the transcript of an honest client
and server executing P1, as well as the transcript of executing the multi-reads in P2 with rewinds after each
operation, while in NextReadGame1

A it is given the same transcript except that second part is generated by
first permuting the addresses in P2 according to π.

We need to argue that these inputs are computationally indistinguishable. For our analysis below, we
assume that a rebuild phase never fails, as this event happens with negligible probability in λ, as discussed
before. We start by modifying the execution of the games in two ways that are shown to be undetectable by
A. The first change will show that all of the accesses into tables appear to the adversary to be generated by
random functions, and the second change will show that the ciphertexts do not reveal any usable information
for the adversary.

First, whenever keys Kj,1,Kj,2 are chosen and used with the pseudorandom function F , we use random
functions gj,1, gj,2 in place of F (Kj,1, ·) and F (Kj,2, ·).11 We do the same for the Rj,1, Rj,2 keys, calling
the random functions rj,1 and rj,2. This change only changes the behavior of A by a negligible amount, as
otherwise we could build a distinguisher to contradict the PRF security of F via a standard hybrid argument
over all of the keys chosen during the game.

The second change we make is that all of the ciphertexts in the transcript are replaced with independent
encryptions of equal-length strings of zeros. We claim that this only affects the output distribution of A by
a negligible amount, as otherwise we could build an adversary to contradict the IND-CPA security of the
underlying encryption scheme via a standard reduction. Here it is crucial that, after each rewind, the client
chooses new randomness for the encryption scheme.

We now complete the proof by showing that the distribution of the transcripts given to A is identical
in the modified versions of NextReadGame0

A and NextReadGame1
A. To see why this is true, let us examine

what is in one of the game transcripts given to A. The transcript for the execution of P1 consists of ORead
and OWrite transcripts, which are accesses to indices in the cuckoo hash tables, ciphertext writes into A0,
and rebuild phases. Finally the execution of P2 (either permuted by π or not) with rewinds generates a
transcript that consists of several accesses to the cuckoo hash tables, each followed by writes to A0 and a
rebuild phase.

By construction of the protocol, in the modified game the only part of the transcript that depends

on the addresses in P2 are the reads into T
(k)
1 and T

(k)
2 for each k. All other parts of the transcript are

oblivious scans of the S(k) arrays and oblivious table rebuilds which do not depend on the addresses (recall

the ciphertexts in these transcripts are encryptions of zeros). Thus we focus on the indices read in each T
(k)
1

and T
(k)
2 , and need to show that, in the modified games, the distribution of these indices does not depend

on the addresses in P2.
The key observation is that, after the execution of P1, the state of the client is such that each address

i will induce a uniformly random sequence of indices in the tables that is independent of the indices read

11As usual, instead of actually picking and using a random function, which is an exponential task, we create random numbers
whenever necessary, and remember them. Since there will be only polynomially-many interactions, this only requires polynomial
time and space.
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for any other address and independent of the transcript for P1. If the data is in the cuckoo table at level k,
then the indices will be

(gj,1(i))kj=1 and (rj,1(i‖ctr))Lj=k+1 .

Thus each i induces a random sequence, and each address will generate an independent sequence. We claim
moreover that the sequence for i is independent of the transcript for P1. This follows from the construction:
For the indices derived from rj,1 and rj,2, the transcript for P1 would have always used a lower value for ctr.
For the indices derived from gj,1 and gj,2, we have that the execution of P1 would not have evaluated those
functions on input i: If i was read during P1, then i would have been written to A0 and a rebuild phase
would have chosen new random functions for gj,1 and gj,2 before the address/value pair i was placed in the
j-th level table again.

With this observation we can complete the proof. When the modified games are generating the transcript
for the multi-read operations in P2, each individual read for an index i induces an random sequence of
table reads among its other oblivious operations. But since each i induces a completely random sequence
and permuting the addresses will only permute the random sequences associated with the addresses, the
distribution of the transcript is unchanged. Thus no adversary can distinguish these games, which means
that no adversary could distinguish NextReadGame0

A and NextReadGame1
A, as required.

6.4 Authenticity, Extensions & Optimizations

Authenticity. To achieve authenticity we sketch how to employ the technique introduced in [14]. A
straightforward attempt is to tag every ciphertext stored on the server along with its location on the server
using a message authentication code (MAC). But this fails because the sever can “roll back” changes to the
data by replacing ciphertexts with previously stored ones at the same location. We can generically fix this
by using the techniques of memory checking [5, 24, 11] at some additional logarithmic overhead. However,
it also turns out that authenticity can also be added at almost no cost to several specific constructions, as
we describe below.

Goldreich and Ostrovsky showed that any ORAM protocol supporting time labeled simulation (TLS) can
be modified to achieve authenticity without much additional complexity. We say that an ORAM protocol
supports TLS if there exists an efficient algorithm Q such that, after the j-th message is sent to the server,
for each index x on the server memory, the number of times x has been written to is equal to Q(j, x).12

Overall, one implements the above tagging strategy, and also includes Q(j, x) with the data being tagged,
and when reading one recomputes Q(j, x) to verify the tag.

Our scheme can be shown to support TLS in a manner very similar to the original hierarchical scheme [14].
The essential observation, also used there, is that the table indices are only written to during a rebuild phase,
so by tracking the number of executed rebuild phases we can compute how many times each index of the
table was written to.

Extensions and optimizations. The scheme above is presented in a simplified form that can be made
more efficient in several ways while maintaining security.

• The keys in the client state can be derived from a single key by appropriately using the PRF. This
shrinks the client state to a single key and counter.

• The initial table C1 can be made larger to reduce the number of rebuild phases (although this does not
affect the asymptotic complexity).

• We can collapse the individual oblivious table rebuilds into one larger rebuild.

• It was shown in [18] that all of the L cuckoo hash tables can share a single O(λ)-size stash S while still
maintaining a negligible chance of table failure.

12Here we mean actual writes on the server, and not OWrite executions.
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• Instead of doing table rebuilds all at once, we can employ a technique that allows for them to be done
incrementally, allowing us to achieve worst-case rather than amortized complexity guarantees [17, 25].
These techniques come at the cost of doubling the server storage.

• The accesses to cuckoo tables on each level during a multi-read can be done in parallel, which reduces
the round complexity of that part to be independent of t, the number of addresses being read.

We can also extend this scheme to support a dynamically changing memory size. This is done by simply
allocating different sized tables during a rebuild that eliminate the lower larger tables or add new ones of
the appropriate size. This modification will achieve next-read pattern hiding security, but it will not be
standard pattern-hiding secure, as it leaks some information about the number of memory slots in use. One
can formalize this, however, in a pattern-hiding model where any two sequences with equal memory usage
are required to be indistinguishable.

Efficiency. In this scheme the client stores the counter and the keys, which can be derived from a single
key using the PRF. The server stores log ` tables, where the j-th table requires 2j + λ memory slots, which
sums to O(` + λ · log `). Using the optimization above, we only need a single stash, reducing the sum to
O(`+λ). When executing ORead, each index read requires accessing two slots plus the λ stash slots in each
of the log ` tables, followed by a rebuild. OWrite is simply one write followed by a rebuild phase. The table
below summarizes the efficiency measures of the scheme.

Client Storage O(1)

Server Storage O(`+ λ)

Read Complexity O(λ · log `) + RP

Write Complexity O(1) + RP

Table 1: Efficiency of ORAM scheme above. “RP” denotes the aggregate cost of the rebuild phases, which
is O(log `), or O(log2 `) in the worst-case, per our discussion above.

7 Efficiency

We now look at the efficiency of our PORAM construction, when instantiated with the ORAM scheme from
section 6 (we assume the rebuild phases are implemented via the Goodrich-Mitzenmacher algorithm [16] with
the worst-case complexity optimization [17, 25].) Since our PORAM scheme preserves (standard) ORAM
security, we analyze its efficiency in two ways. Firstly, we look at the overhead of PORAM scheme on top of
just storing the data inside of the ORAM without attempting to achieve any PoR security (e.g., not using
any error-correcting code etc.). Secondly, we look at the overall efficiency of PORAM. Third, we compare
it with dynamic PDP [12, 31] which does not employ erasure codes and does not provide full retrievability
guarantee. In the table below, ` denotes the size of the client data and λ is the security parameter. We
assume that the ORAM scheme uses a PRF whose computation takes O(λ) work.

PORAM Efficiency vs. ORAM Overall vs. Dynamic PDP [12]

Client Storage Same O(λ) Same

Server Storage × O(1) O(`) × O(1)

Read Complexity × O(1) O(λ log2 `) × O(log `)

Write Complexity × O(λ) O(λ2 log2 `) × O(λ log `)

Audit Complexity Read × O(λ) O(λ2 log2 `) × O(log `)

By modifying the underlying ORAM to dynamically resize tables during rebuilds, the resulting PORAM
instantiation will achieve the same efficiency measures as above, but with ` taken to be amount of memory
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currently used by the memory access sequence. This is in contrast to the usual ORAM setting where ` is
taken to be a (perhaps large) upper bound on the total amount of memory that will ever be used.
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A Simple Dynamic PoR with Square-Root Complexity

We sketch a very simple construction of dynamic PoR that achieves sub-linear complexity in its read, write
and audit operations. Although the scheme is asymptotically significantly worse than our PORAM solution
as described in the main body, it is significantly simpler and may be of interest for some practical parameter
settings.

The construction starts with the first dynamic PoR proposal from the introduction. To store a memory
M ∈ Σ` on the server, the client divides it into L =

√
` consecutive message blocks (m1, . . . ,mL), each

containing L =
√
` symbols. The client then encodes each of the message blocks mi using an (n = 2L, k =

L, d = L + 1)-erasure code (e.g., Reed-Solomon tolerating L erasures), to form a codeword block ci, and
concatenates the codeword blocks to form a string C = (c1, . . . , cL) ∈ Σ2` which it then stores on the server.
We can assume the code is systematic so that the message block mi resides in the first L symbols of the
corresponding codeword block ci. In addition, the client initializes a memory checking scheme [5, 24, 11],
which it uses to authenticate each of the 2` codeword symbols within C.

To read a location j ∈ [`] of memory, the client computes the index i ∈ [L] of the message block mi

containing that location, and downloads the appropriate symbol of the codeword block ci which contains
the value M[j] (here we use that the code is systematic), which it checks for authenticity via the memory
checking scheme. To write to a location j ∈ [`] the client downloads the entire corresponding codeword block
ci (checking for authenticity) decodes mi, changes the appropriate location to get an updated block m′i and
finally re-encodes it to get c′i which it then writes to the server, updating the appropriate authentication
information within the memory checking scheme. The audit protocol selects t = λ (security parameter)
random positions within every codeword block ci and checks them for authenticity via the memory checking
scheme.

The read and write protocols of this scheme each execute the memory checking read protocol to read
and write 1 and

√
` symbols respectively. The audit protocol reads and checks λ

√
` symbols. Assuming an

efficient (poly-logarithmic) memory checking protocol, this means actual complexity of these protocols incurs
another O(log `) factor and another constant factor increase in server storage. Therefore the complexity of
the reads, writes, and audit is O(1), O(

√
`), O(

√
`) respectively, ignoring factors that depend on the security

parameter or are polylogarithmic in `.
Note that the above scheme actually gives us a natural trade-off between the complexity of the writes

and the audit protocol. In particular, for any δ > 0, we can set the message block size to L1 = `δ symbols,
so that the client memory M now consists of L2 = `1−δ such blocks. In this case, the complexity of reads,
writes, and audits becomes O(1), O(`δ), O(`1−δ) respectively.

B Standard Pattern Hiding for ORAM

We recall an equivalent definition to the one introduced by Goldreich and Ostrovsky [14]. Informally,
standard pattern hiding says that an (arbitrarily malicious and efficient) adversary cannot detect which
sequence of instructions a client is executing via the ORAM protocols.

Formally, for a bit b and an adversary A, we define the game ORAMGamebA(λ) as follows:
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• The attacker A(1λ) outputs two equal-length ORAM protocol sequences Q0 = (op0, . . . , opq), Q1 =
(op′0, . . . , op

′
q). We require that for each index j, the operations opj and op′j only differ in the location

they access and the values the are writing, but otherwise correspond to the same operation (read or
write).

• The challenger initializes an honest client C and server S, and sequentially executes the operations in
Qb, between C and S.

• Finally, A is given the complete transcript of all the protocol executions, and he outputs a bit b̃, which
is the output of the game.

We say that an ORAM protocol is pattern hiding if for all efficient adversaries A we have:∣∣Pr[ORAMGame0
A(λ) = 1]− Pr[ORAMGame1

A(λ) = 1]
∣∣ ≤ negl(λ).

Sometimes we also want to achieve a stronger notion of security where we also wish to hide whether each
operation is a read or a write. This can be done generically by always first executing a read for the desired
location and then executing a write to either just write-back the read value (when we only wanted to do a
read) or writing in a new value.

C Standard ORAM Security Does not Suffice for PORAM

In this section we construct an ORAM that is secure in the usual sense but is not next-read pattern hiding.
In fact, we will show something stronger: If the ORAM below were used to instantiate our PORAM scheme
then the resulting dynamic PoR scheme is not secure. This shows that some notion of security beyond
regular ORAM is necessary for the security PORAM.

Counterexample construction. We can take any ORAM scheme (e.g., the one in Section 6 for concrete-
ness) and modify it by “packing” multiple consecutive logical addresses into a single slot of the ORAM. In
particular, if the client initializes the modified ORAM (called MORAM within this section) with alphabet
Σ = {0, 1}w, it will translate this into initializing the original ORAM with the alphabet Σn = {0, 1}nw,
where each symbol in the modified alphabet “packs” together n symbols of the original alphabet. Assume
this is the same n as the codeword length in our PORAM protocol.

Whenever the client wants to read some address i using MORAM, the modified scheme looks up where it
was packed by computing j = bi/nc, uses the original ORAM scheme to execute ORead(j), and then parses
the resulting output as (v0, . . . , vn−1) ∈ Σn, and returns vi mod n. To write v to address i, MORAM runs
ORAM scheme’s ORead(bi/nc) to get (v0, . . . , vn−1) as before, then sets vi mod n ← v and writes the data
back via ORAM scheme’s OWrite(bi/nc, (v0, . . . , vn−1)). It is not hard to show that this modified scheme
retains standard ORAM security, since it hides which locations are being read/written.

We next discuss why this modification causes the MORAM to not be NRPH secure. Consider what
happens if the client issues a read for an address, say i = 0, and then is rewound and reads another address
that was packed into the same ORAM slot, say i+1. Both operations will cause the client to issue ORead(0).
And since our MORAM was deterministic, the client will access exactly same table indices at every level on
the server on both runs. But, if these addresses were permuted to not be packed together (e.g., blocks were
packed using equivalence classes of their indices ( mod `/n)), then the client will issue ORead commands
on different addresses, reading different table positions (with high probability), thus allowing the server to
distinguish which case it was in and break NRPH security.

This establishes that the modified scheme is not NRPH secure. To see why PORAM is not secure with
MORAM, consider an adversary that, after a sequence of many read/write operations, randomly deletes one
block of its storage (say, from the lowest level cuckoo table). If this block happens to contain a non-dummy
ciphertext that contains actual data (which occurs with reasonable probability), then this attack corresponds
to deleting some codeword block in full (because all codeword blocks corresponding to a message block was
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packed in the same ORAM storage location), even though the server does not necessarily know which one.
Therefore, the underlying message block can never be recovered from the attacker. But this adversary can
still pass an audit with good probability, because the audit would only catch the adversary if it happened
to access the deleted block during its reads either by (1) selecting exactly this location to check during the
audit, (2) reading this location in the cuckoo table slot as a dummy read. This happens with relatively low
probability, around 1/`, where ` is the number of addresses in the client memory.

To provide some more intuition, we can also examine why this same attack (deleting a random location
in the lowest level cuckoo table) does not break PORAM when instantiated with the ORAM implementation
from Section 6 that is NRPH secure. After this attack, the adversary still maintains a good probability of
passing a subsequent audit. However, by deleting only a single ciphertext in one of the cuckoo tables, the
attacker now deleted only a single codeword symbol, not a full block of n of them. And now we can show
that our extractor can still recover enough of the other symbols of the codeword block so that the erasure
code will enable recovery of the original data. Of course, the server could start deleting more of the locations
in the lowest level cuckoo table, but he cannot selectively target codeword symbols belonging to a single
codeword block, since it has no idea where those reside. If he starts to delete too many of them just to make
sure a message block is not recoverable, then he will lose his ability to pass an audit.
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