
Energy Efficiency in Secure and Dynamic Cloud Storage

Adilet Kachkeev Ertem Esiner Alptekin Küpçü Öznur Özkasap

Koç University Department of Computer Science and Engineering, İstanbul, Turkey
{akachkeev,eesiner,akupcu,oozkasap}@ku.edu.tr

Abstract. The popularity of the cloud storage systems has brought a number of
challenges. Two of them are data integrity and energy efficiency. There are many
proposed static solutions to prove the integrity of a file. For the dynamic case,
Rank-Based Authenticated Skip list (RBASL) has been presented. It provides the
update operations with logarithmic complexity. However, an RBASL expects the
block size to be fixed. In a realistic scenario, where the updates can be of vari-
able size, an RBASL performs O(n) update operations on the data structure when
a change in the file occurs, where n is the number of blocks. To overcome this
problem, we propose Flexible-length based authenticated skip list (FlexList) to
make O(u) update operations where u is the number of the update operations.
Moreover, we developed an algorithm to carry out multiple challenges at once.
We have tested our algorithm, and the results show time and energy efficiencies
of 60%, 45%, 35% and 20% for file sizes 4MB, 40MB, 400MB, and 4GB respec-
tively.

Keywords: Energy efficiency, cloud storage, skip list, provable data possession.

1 Introduction
Cloud data storage systems have become popular in recent years both in academia [1,
3, 6, 7, 10, 13] and industry (e.g., Sky Drive, Google Drive, Amazon S3), where energy
efficiency and proving data integrity have become important challenges [4]. These sys-
tems have two entities, a client and a server. A client sends her data to the server - data
storage provider (third party), which promises to store the data intact and provide its
availability. However, the server can be malicious, and even if the server is trustworthy,
there may be hardware or software related failures that may cause data corruption or
loss. Therefore, the client should be able to efficiently (in terms of energy and time) and
securely check the integrity of her data without downloading the whole file [1].

One of the first proposed models with provable data integrity is Provable Data Pos-
session (PDP) [1]. The client, in this model, has the ability to challenge the server on
randomly chosen blocks, the server sends a proof, and she can verify the data integrity
through that proof. PDP and other related schemes are applicable to the static cases,
if the blockwise update operations (insert, remove, modify) are possible, they demon-
strate poor performance [1, 6, 10, 13]. The static scenario can be used in some systems
(e.g., archival storage at the libraries), but many other applications may necessitate a
dynamic scenario, where the client can interact with her data in a read/write manner,
while preserving the data possession guarantees. Ateniese et al. [3] proposed Scalable
PDP, where the client has a pre-determined number of a limited set of operations. Erway



et al. [7] proposed a model called Dynamic Provable Data Possession, which not only
extends the PDP model, but also provides a dynamic solution. However, an underlying
authenticated data structure based on a skip list [12] is needed for the implementation
of the DPDP scheme.

For the dynamic scenario, Erway et al. [7] introduced the new data structure rank-
based authenticated skip list (RBASL), which is a special type of authenticated skip list
[9] to be used in DPDP. In this model, the client preprocesses the file and stores meta
data to verify the later proofs from the server. Then she outsources the file to the server.
At any time, she can challenge some blocks to check the integrity of her file. Upon
such request, the server prepares a proof for the challenged blocks. In opposition to an
authenticated skip list, where a search is done using a key, in an RBASL one can search
with indices of the blocks. This feature gives the opportunity to efficiently check the
integrity of the data using block indices. Authenticated ranks are used as a search key
in an RBASL. Each node has a rank, indicating the count of the nodes at leaf-level that
are reachable from that particular node. Leaf-level nodes, having no a f ter links, have a
rank of 1.

In a realistic scenario, the client may want to alter some part of a particular block,
not the whole. It can be problematic to perform in an RBASL. Modification of a partic-
ular block in an RBASL may cause the modifications in all consequent blocks as well.
Therefore, it is subject to O(n) modifications for DPDP and PDP, which is inefficient
in terms of time and energy. We propose a new data structure called FlexList, which
is based on an authenticated skip list. It performs dynamic operations (modify, insert,
remove) for cloud data storage, while having O(1) variable block sized updates. More-
over, the client has a capability to challenge multiple blocks at once and the server using
the multi-proof algorithm prepares the proof for the client.

Our main contribution is as follows:
• The client can challenge the server for multiple blocks using authenticated skip

lists, rank-based authenticated skip lists and FlexLists. Our algorithm provides an
optimal proof, without any repeated items. The current experimental results show
time and energy efficiencies of 60%, 45%, 35% and 20% for file sizes 4MB, 40MB,
400MB, and 4GB respectively.

2 Secure and Dynamic Cloud Storage using FlexList
2.1 FlexList
A fixed block size is suitable for an RBASL, since a search (and other methods) by
byte index of the data is not possible with rank information. A FlexList, unlike an
RBASL, supports the variable size of a block. Due to the problem of providing variable
block sized operations with an RBASL, we present a FlexList, which overcomes the
problem and serves as an underlying data structure in our cloud storage system. A
FlexList stores, at every node, the total number of bytes that can be reached from that
node, instead of the number of blocks reachable from it. The rank of each leaf-level
node is computed as the sum of the length of its data and the rank of its a f ter node (0
if null). The rank for every non-leaf node is computed as the summation of the ranks
of its below and a f ter links [8].



2.2 FlexDPDP
FlexList is employed as an authenticated data structure in our secure and dynamic cloud
storage systems, which supports energy efficient data integrity checking. We define a
FlexDPDP as a DPDP scheme with FlexList. In our system we have two main parties:
a client and a server. The server provides storage space for the client’s file. An RBASL
can be constructed on the top of the file as shown by Erway et al. [7]. A FlexList, in
contrast to an RBASL, can search and reach the data bytes easily, even though the data
blocks are of variable sizes. Therefore, a FlexList can perform a variable sized update
of length O(u) in O(u) operations. However, an RBASL will need O(n) operations,
where n is the number of the blocks in the file. A FlexList represents file blocks as the
leaves. So the search path for particular block is the proof membership (i.e., integrity)
from this leaf node to the root. We developed an optimized proof generation algorithm,
which handles the multiple block challenge at once [8].

The FlexDPDP scheme employs homomorphic verifiable tags (as DPDP), so that a
number of tags can be combined to obtain a single tag that corresponds to the combined
blocks [2]. Small size of tags compared to data blocks enables storage in memory. The
authenticity of the skip list gives guarantees for the integrity of tags, and tags protect
the integrity of the data blocks.

2.3 Multi-Proof Generation
The client server system starts with the client preprocessing her data, where a FlexList
on the file is created and tags are calculated for each block. Then, the client send the
random seed to the server and the file itself. The server using the seed can create the
identical FlexList using the data blocks and tags (sent by the client). The server sends
the hash value of the root of the FlexList for the client to verify the correct construction
of the FlexList. After the successful verification, the client can safely delete the file and
keep the hash value of the root as the meta data. At any time later, the client can send
a random seed to the server to challenge a number of blocks. The server using the seed
creates the challenges, runs the genMultiProof algorithm and returns proof generated
by this algorithm to the client. She can verify the proof using the meta data and the
verification algorithm.
genMultiProof : The proof generation algorithm is run by the server, upon the receipt
of the random seed from the client. The server first generates a predetermined number
of challenges, and random values accordingly. Then, the server runs the genMultiProof
algorithm to obtain the proof, file blocks and tags for the challenged indices. The algo-
rithm traverses to the leaf-level nodes holding the challenged blocks. Along the traverse
path, it stores visited nodes. We have observed that the regular search for each chal-
lenged block is inefficient. Since the regular search always starts from the root, there
are a lot of repeated nodes in the proof. To handle this problem, we save the states at
each intersection point. A node is an intersection point of proof paths of two indices
when the first index can be found following the below link and the second index is
detected by following the a f ter link. Note that all the challenges (indices) are in as-
cending order. In our optimal proof, we visit and take information stored for each node



on the proof path only once [8]. Therefore, the algorithm achieves significant gains in
terms of time and energy.

3 Evaluation

2*10^3 2*10^4 2*10^5 2*10^6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Number of blocks

R
at

io

 

 
Energy Ratio
Time Ratio

Fig. 1. Ratio graph on genMultiProof algorithm.

We developed a prototype implementaion of an optimized FlexList and used it in
our FlexDPDP scheme. C++ is used as the programming language and some of the
methods from the Cashlib library [11, 5] are employed. The experiment was conducted
on a 64-bit machine with a 2.4GHz Intel 4 core CPU (only one core is active), 4GB
main memory and 8MB L2 cache, running Ubuntu 12.10. As security parameters, we
used 1024-bit RSA modulus, 80-bit random numbers, and SHA-1 hash function, overall
resulting in an expected security of 80-bits. Watts up Pro meter was used for the energy
efficiency tests. It measures the total energy consumption of the connected device and
displays this information. We measured the average energy consumption while the ex-
periment was running. Then, we measured the average energy cost for the idle time,
while no tests were taking place. The difference between these two measurements were
used in the calculation of the results. Energy consumption and time (CPU) ratio results
are close in our experiment. Since there was no I/O delay in the test due to disk access,



we argue that the energy efficiency of our genMultiProof algorithm is directly impacted
by the CPU time. The test is the average of 10 runs.

We have tested our genMultiProof algorithm, which is used to accumulate the proof
along with the FlexList for the received challenge request from the client. The ratio
graph for the genMultiProof algorithm is shown in Figure 1. We had different file size
scenarios : starting a file size from 4MB to 4GB (all with a block size of 2KB). In every
scenario we had the same challenge size of 460, which is sufficient for high probability
(constitutes to 99% with the assumption that 1% of the file altered) of catching the
cheating server. The time/energy ratio is a division of the time/energy spent for the
operation of 460 challenges (one by one) to the time/energy spent for the genMultiProof
algorithm. Even though the results show a decline in the time and energy ratio while the
file size grows, the efficiency of the algorithm is still satisfactory. The algorithm gets its
advantage through the minimization of the proof size, therefore no repeated proof nodes
for the same node are created. Once created, the proof node is used as a common proof
node for other nodes as well. As the file size grows, the ratio on the number of common
proof nodes to the total proof size decreases, since we have the constant number of
challenges as 460. Note that the maximum efficiency of the genMultiProof algorithm is
reached when the challenged blocks are near each other. Nevertheless, the graph clearly
shows the efficiency gains in terms of energy and time for sufficiently large file sizes.
So for the file of size 4MB, 40MB, 400MB and 4GB, we have time and energy gains of
60%, 45%, 35% and 20% respectively.

4 Conclusion and Future Work
With the emergence of the distributed and cloud storage services, energy efficiency has
become one of the important challenges [4]. Early works have shown that the static
solutions with optimal complexity [1, 13], and the dynamic solutions with logarithmic
complexity [7] are within reach. However, the DPDP [7] solution is not applicable to
the realistic scenarios since it supports only fixed block size and therefore lacks flexi-
bility on the data updates, while updates in the realistic scenario are more likely to be of
a variable size. We have extended their work in several ways and provided a new data
structure (FlexList) and its usage in the cloud data storage. A FlexList efficiently sup-
ports the variable block sized multiple updates, and we showed how handling multiple
challenges at once greatly improves scalability and energy efficiency. As a part of fu-
ture work, we plan to further develop FlexDPDP algorithms. Currently, we are working
on energy efficient algorithms to create a FlexList from a scratch, perform and verify
multiple updates. Subsequently, a P2P model for the FlexDPDP will be investigated
and designed. We plan to deploy such a system on PlanetLab and run tests for energy
efficiency at both the client and the server.

Acknowledgements
Our work was partially supported by the COST (European Cooperation in Science and
Technology) framework, under Action IC0804: “Energy Efficiency in Large Scale Dis-
tributed Systems” and Action IC1206, by TÜBİTAK (the Scientific and Technological



Research Council of Turkey) under grants 109M761 and 112E115, by Türk Telekom,
Inc. under Grant 11315-06, and by Koç Sistem, Inc.

References
1. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Prov-

able data possession at untrusted stores. In ACM CCS, 2007.
2. G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification

protocols. In ASIACRYPT, 2009.
3. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data

possession. In SecureComm, 2008.
4. A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, and K. Pentik-

ousis. Energy-efficient cloud computing. Comput. J., 53(7):1045–1051, Sept. 2010.
5. Brownie cashlib cryptographic library. http://github.com/brownie/cashlib.
6. Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In

TCC, 2009.
7. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession.

In ACM CCS, 2009.
8. E. Esiner, A. Kachkeev, A. Küpçü, and Ö. Özkasap. Flexlist: Optimized

skip list for secure cloud storage. Technical Report, Koç University, 2013.
http://crypto.ku.edu.tr/sites/crypto.ku.edu.tr/files/papers/techreport-flexlist.pdf.

9. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictio-
nary with skip lists and commutative hashing. In DARPA, 2001.

10. A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. In ACM CCS, 2007.
11. S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. Zkpdl: Enabling effi-

cient implementation of zero-knowledge proofs and electronic cash. In USENIX Security,
2010.

12. W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the
ACM, 1990.

13. H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, 2008.


