Lecture 1 Root Locus

- What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied.
- Based on Root-Locus graph we can choose the parameter for stability and the desired transient response.

How does the Root-Locus graph look-like?

- For the system

The location of poles as a function of $K\ {\rm can}\ {\rm be}\ {\rm calculated}\ {\rm as}$

К	Pole 1	Pole 2	
0	-10	0	
5	-9.47	-0.53	
10	-8.87	-1.13	
15	-8.16	-1.84	
20	-7.24	-2.76	
25	-5	-5	
30	-5 + j2.24	-5 - j2.24	
35	-5 + j3.16	-5 - j3.16	
40	-5 + j3.87	-5 - j3.87	
45	-5 + j4.47	-5 - j4.47	
50	-5 + j5	-5 - j5	

Our First Root Locus

The corresponding root locus can be drawn

Drawing the Root Locus

- How do we draw root locus
 - for more complex systems,
 - and without calculating poles.
- We exploit the properties of Root-Locus to do a rough sketch.
- Therefore, lets explore the properties of root locus.

Properties of Root Locus

For the closed loop system

• The transfer function is

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

• For a given K, s^* is a pole if $1 + KG(s^*)H(s^*) = 0$

which is equivalent to

$$\begin{split} &- |KG(s^*)H(s^*)| = 1, \\ &- \angle KG(s^*)H(s^*) = (2m+1)\pi \end{split}$$

Since K is real and positive these conditions would be equivalent to

$$-\angle G(s^*)H(s^*) = (2m+1)\pi -K = \frac{1}{|G(s^*)H(s^*)|}$$

Number of Branches and Symmetry

• The number of branches of the root locus equals the number of closed loop poles

 Since the poles appear as complex conjugate pairs, root locus is symmetric about real axis

Real Axis Segments

- Which parts of real line will be a part of root locus?
- Remember the angle condition $\angle G(\sigma)H(\sigma) = (2m+1)\pi$

$$\angle G(\sigma)H(\sigma) = \sum \angle (\sigma - z_i) - \sum \angle (\sigma - p_i)$$

- The angle contribution of off-real axis poles and zeros is zero. (Because they appear in complex pairs).
- What matters is the the real axis poles and zeros.
- Rule: If the total number of open loop poles and zeros on the right of a point is odd then that point is part of root-locus.

Real Axis Segments: Examples

• Example 1

1

The real axis segments: [-2, -1] and [-4, -3]• Example 2

The real axis segments: [-2, -1] and [3, 5]

Start and End Points

• Lets write

$$H(s) = \frac{N_H(s)}{D_H(s)} \qquad \qquad G(s) = \frac{N_G(s)}{D_G(s)}$$

Therefore

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)} = \frac{KN_G(s)D_H(s)}{D_G(s)D_H(s) + KN_G(s)N_H(s)}$$

As a result,

- when K is close to zero

$$T(s) \approx \frac{KN_G(s)D_H(s)}{D_G(s)D_H(s)}$$

i.e. the closed loop poles are essentially the the poles of ${\cal G}(s){\cal H}(s).$

- when K is large

$$T(s) \approx \frac{KN_G(s)D_H(s)}{KN_G(s)N_H(s)}$$

i.e. the closed loop poles are essentially the zeros of G(s)H(s).

Conclusion: The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).

Behavior at **Infinity**

• What if the number of (finite) open loop poles are more than (finite) open loop zeros, e.g.,

$$KG(s)H(s) = \frac{K}{s(s+1)(s+2)}$$

– The poles are at 0,-1,-2

- The zeros are at $s \to \infty$.
- \bullet Let s approach to ∞ then

$$KG(s)H(s) \approx \frac{K}{s^3}$$

- Skipping the details, the asymptotes are calculated using formulas:
 - The real axis intercept: The point where the asymptotes merge on the real axis

$$\sigma_a = \frac{\Sigma finite poles - \Sigma finite zeros}{\# finite poles - \# finite zeros}$$

- The angles with real line:

$$\theta_a = \frac{(2m+1)\pi}{\#finitepoles - \#finitezeros}$$

Asymptotes: Example

• Consider the unity feedback system

• The real axis intercept for the asymptotes:

$$\sigma_a = \frac{(-1-2-4) - (-3)}{4-1} = -\frac{4}{3}$$

• The angles

$$\theta_a = \frac{(2m+1)\pi}{3}$$

which yields $\frac{\pi}{3}$, π and $\frac{5\pi}{3}$

Break-away and Break-in Points

- Break-away point: The point where root-locus leaves the real axis.
- Break-in point: The point where root locus enters the real axis.
- \bullet Variation of K as a function of σ

 Note that the curves have their local maximum and minimum points at break-away and break-in points. So the derivative of

$$K = -\frac{1}{G(\sigma)H(\sigma)}$$

should be equal to zero at break-away and break-in points.

Break-away and Break-in Points: Example

Find the break-away and break-in point of the following figure

Solution: From the figure

$$K(s)H(s) = \frac{K(s-3)(s-5)}{(s+1)(s+2)} = \frac{K(s^2 - 8s + 15)}{s^2 + 3s + 1}$$

On the real axis

$$K = -\frac{\sigma^2 + 3\sigma + 2}{\sigma^2 - 8\sigma + 15}$$

Differentiating K with respect to σ and equating to

zero

$$\frac{dK}{d\sigma} = \frac{11\sigma^2 - 26\sigma - 61}{(\sigma^2 - 8\sigma + 15)^2} = 0$$

which is achieved for $\sigma_1 = -1.45$ and $\sigma_2 = 3.82$.

 it can be shown that a break-away or break-in point satisfy

$$\Sigma \frac{1}{\sigma + z_i} = \Sigma \frac{1}{\sigma + p_i}$$

• Applying this formula to our problem, we obtain

$$\frac{1}{\sigma - 3} + \frac{1}{\sigma - 5} = \frac{1}{\sigma + 1} + \frac{1}{\sigma + 2}$$

which would yield

$$11\sigma^2 - 26\sigma - 61 = 0$$

(same as what we obtained before)

$j\omega$ Axis Crossings

- Use Routh-Hurwitz to find $j\omega$ axis crossings.
- \bullet When we have $j\omega$ axis crossings, the Routh-table has all zeros at a row.
- Find the K value for which a row of zeros is achieved in the Routh-table.

Example: Consider

$$T(s) = \frac{K(s+3)}{s^4 + 7s^3 + 14s^2 + (8+K)s + 3K}$$

The Routh table

<i>s</i> ⁴	1	14	3 <i>K</i>
s ³	7	8 + K	
s^2	90 - K	21 <i>K</i>	
s^1	$\frac{-K^2 - 65K + 720}{90 - K}$		
s^0	21 <i>K</i>		

The row s^1 is zero for K = 9.65. For this K, the previous row polynomial is

$$(90 - K)s^2 + 21K = 80.35s^2 + 202.7 = 0$$

whose roots are $s = \pm j1.59$.

Angles of Departure and Arrival

• Angles of Departure from Open Loop Poles

$$\theta_1 = \theta_2 + \theta_3 - \theta_4 - \theta_5 + \theta_6 - (2k+1)180^{\circ}$$

• Angles of Departure form Open Loop Zeros

$$\theta_2 = \theta_1 - \theta_3 + \theta_4 + \theta_5 - \theta_6 + (2k+1)180^o$$

Angle of Departure: Example

Consider the system

The root locus for this system

from this figure

$$-\theta_1 - \theta_2 + \theta_3 - \theta_4 = -\theta_1 - 90^o + \arctan(\frac{1}{1}) - \arctan(\frac{1}{2}) = 180^o$$

from which we obtain $\theta_1 = -108.4^o$.

Root Locus Example

Problem: Sketch the Root-Locus of the system

- The number of branches: 2
- Open Loop Poles: -2, -4 (starting points)
- Open Loop Zeros: 2 + j4, 2 j4 (ending points)
- Real Axis segments: [-4, -2].
- Number of finite poles = Number of Finite Zeros \Rightarrow No Asymptotes
- Break-away point: Take the derivative of $K = -\frac{1}{\sigma}$

$$\frac{dK}{d\sigma} = -\frac{d}{d\sigma} \frac{(\sigma+2)(\sigma+4)}{\sigma^2 - 4\sigma + 20} = \frac{-10s^2 + 24s + 152}{(\sigma^2 - 4\sigma + 20)^2}$$

equating to zero we obtain $\sigma_b = -2.87$ and K = 0.0248.

- $j\omega$ axis crossing occurs for K = 1.5 and at $\pm j3.9$.
- The root locus crosses $\zeta=0.45$ line for K=0.417 at $3.4 \angle 116.7^o$

The resulting Root Locus:

Root Locus Example 2

Problem: Sketch the Root-Locus of the third order system

- Number of branches: 3
- Open Loop Poles: 0, -1 10 (Starting points)
- Open Loop Zero: -1.5 (One of the end points)
- Real Axis Segments: [-1, 0] and [-10 1.5]
- Asymptotes: $\sigma_a = \frac{-11 (-1.5)}{3 1} = -4.75$ and $\theta_a = \frac{\pi}{2}, \frac{3\pi}{2}$.
- Break-in, away points: The derivative of $K = -\frac{1}{G(\sigma)}$ yields

$$\frac{2\sigma^3 + 15.5\sigma^2 + 33\sigma + 15}{()^2}$$

equating to zero we obtain

- $-\sigma_1 = -0.62$ with gain K = 2.511 (Break-away point)
- $-\sigma_2 = -4.4$ with gain K = 28.89 (Break-away point)

 $-\sigma_3 = -2.8$ with gain K = 27.91 (Break-in point)

The resulting root locus

