Lecture 1
 Root Locus

- What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied.
- Based on Root-Locus graph we can choose the parameter for stability and the desired transient response.

How does the Root-Locus graph look-like?

- For the system

(c)

The location of poles as a function of K can be calculated as

\boldsymbol{K}	Pole 1	Pole 2
0	-10	0
5	-9.47	-0.53
10	-8.87	-1.13
15	-8.16	-1.84
20	-7.24	-2.76
25	-5	-5
30	$-5+j 2.24$	$-5-j 2.24$
35	$-5+j 3.16$	$-5-j 3.16$
40	$-5+j 3.87$	$-5-j 3.87$
45	$-5+j 4.47$	$-5-j 4.47$
50	$-5+j 5$	$-5-j 5$

Our First Root Locus

The corresponding root locus can be drawn

Drawing the Root Locus

- How do we draw root locus
- for more complex systems,
- and without calculating poles.
- We exploit the properties of Root-Locus to do a rough sketch.
- Therefore, lets explore the properties of root locus.

Properties of Root Locus

For the closed loop system

- The transfer function is

$$
T(s)=\frac{K G(s)}{1+K G(s) H(s)}
$$

- For a given K, s^{*} is a pole if

$$
1+K G\left(s^{*}\right) H\left(s^{*}\right)=0
$$

which is equivalent to
$-\left|K G\left(s^{*}\right) H\left(s^{*}\right)\right|=1$,
$-\angle K G\left(s^{*}\right) H\left(s^{*}\right)=(2 m+1) \pi$
Since K is real and positive these conditions would be equivalent to
$-\angle G\left(s^{*}\right) H\left(s^{*}\right)=(2 m+1) \pi$
$-K=\frac{1}{\left|G\left(s^{*}\right) H\left(s^{*}\right)\right|}$

Number of Branches and Symmetry

- The number of branches of the root locus equals the number of closed loop poles

- Since the poles appear as complex conjugate pairs, root locus is symmetric about real axis

Real Axis Segments

- Which parts of real line will be a part of root locus?
- Remember the angle condition

$$
\angle G(\sigma) H(\sigma)=(2 m+1) \pi
$$

$$
\angle G(\sigma) H(\sigma)=\sum \angle\left(\sigma-z_{i}\right)-\sum \angle\left(\sigma-p_{i}\right)
$$

- The angle contribution of off-real axis poles and zeros is zero. (Because they appear in complex pairs).
- What matters is the the real axis poles and zeros.
- Rule: If the total number of open loop poles and zeros on the right of a point is odd then that point is part of root-locus.

Real Axis Segments: Examples

- Example 1

The real axis segments: $[-2,-1]$ and $[-4,-3]$

- Example 2

The real axis segments: $[-2,-1]$ and $[3,5]$

Start and End Points

- Lets write

$$
H(s)=\frac{N_{H}(s)}{D_{H}(s)} \quad G(s)=\frac{N_{G}(s)}{D_{G}(s)}
$$

Therefore

$$
T(s)=\frac{K G(s)}{1+K G(s) H(s)}=\frac{K N_{G}(s) D_{H}(s)}{D_{G}(s) D_{H}(s)+K N_{G}(s) N_{H}(s)}
$$

As a result,

- when K is close to zero

$$
T(s) \approx \frac{K N_{G}(s) D_{H}(s)}{D_{G}(s) D_{H}(s)}
$$

i.e. the closed loop poles are essentially the the poles of $G(s) H(s)$.

- when K is large

$$
T(s) \approx \frac{K N_{G}(s) D_{H}(s)}{K N_{G}(s) N_{H}(s)}
$$

i.e. the closed loop poles are essentially the zeros of $G(s) H(s)$.

Conclusion: The root locus begins at the finite and infinite poles of $G(s) H(s)$ and ends at the finite and infinite zeros of $G(s) H(s)$.

Behavior at Infinity

- What if the number of (finite) open loop poles are more than (finite) open loop zeros, e.g.,

$$
K G(s) H(s)=\frac{K}{s(s+1)(s+2)}
$$

- The poles are at $0,-1,-2$
- The zeros are at $s \rightarrow \infty$.
- Let s approach to ∞ then

$$
K G(s) H(s) \approx \frac{K}{s^{3}}
$$

- Skipping the details, the asymptotes are calculated using formulas:
- The real axis intercept: The point where the asymptotes merge on the real axis

$$
\sigma_{a}=\frac{\Sigma \text { finitepoles }-\Sigma \text { finitezeros }}{\# \text { finitepoles }-\# \text { finitezeros }}
$$

- The angles with real line:

$$
\theta_{a}=\frac{(2 m+1) \pi}{\# \text { finitepoles }-\# \text { finitezeros }}
$$

Asymptotes: Example

- Consider the unity feedback system

- The real axis intercept for the asymptotes:

$$
\sigma_{a}=\frac{(-1-2-4)-(-3)}{4-1}=-\frac{4}{3}
$$

- The angles

$$
\theta_{a}=\frac{(2 m+1) \pi}{3}
$$

which yields $\frac{\pi}{3}, \pi$ and $\frac{5 \pi}{3}$

Break-away and Break-in Points

- Break-away point: The point where root-locus leaves the real axis.
- Break-in point: The point where root locus enters the real axis.
- Variation of K as a function of σ

- Note that the curves have their local maximum and minimum points at break-away and break-in points. So the derivative of

$$
K=-\frac{1}{G(\sigma) H(\sigma)}
$$

should be equal to zero at break-away and break-in points.

Break-away and Break-in Points: Example

Find the break-away and break-in point of the following figure

Solution: From the figure

$$
K(s) H(s)=\frac{K(s-3)(s-5)}{(s+1)(s+2)}=\frac{K\left(s^{2}-8 s+15\right)}{s^{2}+3 s+1}
$$

On the real axis

$$
K=-\frac{\sigma^{2}+3 \sigma+2}{\sigma^{2}-8 \sigma+15}
$$

Differentiating K with respect to σ and equating to
zero

$$
\frac{d K}{d \sigma}=\frac{11 \sigma^{2}-26 \sigma-61}{\left(\sigma^{2}-8 \sigma+15\right)^{2}}=0
$$

which is achieved for $\sigma_{1}=-1.45$ and $\sigma_{2}=3.82$.

- it can be shown that a break-away or break-in point satisfy

$$
\sum \frac{1}{\sigma+z_{i}}=\sum \frac{1}{\sigma+p_{i}}
$$

- Applying this formula to our problem, we obtain

$$
\frac{1}{\sigma-3}+\frac{1}{\sigma-5}=\frac{1}{\sigma+1}+\frac{1}{\sigma+2}
$$

which would yield

$$
11 \sigma^{2}-26 \sigma-61=0
$$

(same as what we obtained before)

$j \omega$ Axis Crossings

- Use Routh-Hurwitz to find $j \omega$ axis crossings.
- When we have $j \omega$ axis crossings, the Routh-table has all zeros at a row.
- Find the K value for which a row of zeros is achieved in the Routh-table.
Example: Consider

$$
T(s)=\frac{K(s+3)}{s^{4}+7 s^{3}+14 s^{2}+(8+K) s+3 K}
$$

The Routh table

s^{4}	1	14	$3 K$
s^{3}	7	$8+K$	
s^{2}	$90-K$	$21 K$	
s^{1}	$\frac{-K^{2}-65 K+720}{90-K}$		
s^{0}	$21 K$		

The row s^{1} is zero for $K=9.65$. For this K, the previous row polynomial is

$$
(90-K) s^{2}+21 K=80.35 s^{2}+202.7=0
$$

whose roots are $s= \pm j 1.59$.

Angles of Departure and Arrival

- Angles of Departure from Open Loop Poles

$$
\theta_{1}=\theta_{2}+\theta_{3}-\theta_{4}-\theta_{5}+\theta_{6}-(2 k+1) 180^{\circ}
$$

- Angles of Departure form Open Loop Zeros

$$
\theta_{2}=\theta_{1}-\theta_{3}+\theta_{4}+\theta_{5}-\theta_{6}+(2 k+1) 180^{\circ}
$$

Angle of Departure: Example

Consider the system

The root locus for this system

from this figure
$-\theta_{1}-\theta_{2}+\theta_{3}-\theta_{4}=-\theta_{1}-90^{\circ}+\arctan \left(\frac{1}{1}\right)-\arctan \left(\frac{1}{2}\right)=180^{\circ}$ from which we obtain $\theta_{1}=-108.4^{\circ}$.

Root Locus Example

Problem: Sketch the Root-Locus of the system

- The number of branches: 2
- Open Loop Poles: $-2,-4$ (starting points)
- Open Loop Zeros: $2+j 4,2-j 4$ (ending points)
- Real Axis segments: $[-4,-2]$.
- Number of finite poles $=$ Number of Finite Zeros \Rightarrow No Asymptotes
- Break-away point: Take the derivative of $K=-\frac{1}{\sigma}$

$$
\frac{d K}{d \sigma}=-\frac{d}{d \sigma} \frac{(\sigma+2)(\sigma+4)}{\sigma^{2}-4 \sigma+20}=\frac{-10 s^{2}+24 s+152}{\left(\sigma^{2}-4 \sigma+20\right)^{2}}
$$

equating to zero we obtain $\sigma_{b}=-2.87$ and $K=0.0248$.

- $j \omega$ axis crossing occurs for $K=1.5$ and at $\pm j 3.9$.
- The root locus crosses $\zeta=0.45$ line for $K=0.417$ at $3.4 \angle 116.7^{\circ}$

The resulting Root Locus:

Root Locus Example 2

Problem: Sketch the Root-Locus of the third order system

- Number of branches: 3
- Open Loop Poles: $0,-1-10$ (Starting points)
- Open Loop Zero: -1.5 (One of the end points)
- Real Axis Segments: $[-1,0]$ and $[-10-1.5]$
- Asymptotes: $\sigma_{a}=\frac{-11-(-1.5)}{3-1}=-4.75$ and $\theta_{a}=\frac{\pi}{2}, \frac{3 \pi}{2}$.
- Break-in, away points: The derivative of $K=-\frac{1}{G(\sigma)}$ yields

$$
\frac{2 \sigma^{3}+15.5 \sigma^{2}+33 \sigma+15}{()^{2}}
$$

equating to zero we obtain
$-\sigma_{1}=-0.62$ with gain $K=2.511$ (Break-away point)
$-\sigma_{2}=-4.4$ with gain $K=28.89$ (Break-away point)

$-\sigma_{3}=-2.8$ with gain $K=27.91$ (Break-in point)

The resulting root locus

