Handout #4 Friday, November 1, 2013

Homework Set #3

Due: Monday, November 11, 2013.

1. DFT as an Orthogonal Basis Change

Consider C^N the vector space of N dimensional complex vectors. We can define a basis $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_N\}$ where

$$\mathbf{f}_{k} = \begin{bmatrix} f_{k,1} \\ f_{k,2} \\ \vdots \\ f_{k,N} \end{bmatrix}, \quad f_{k,l} = \frac{1}{N} e^{\frac{j2\pi(k-1)(l-1)}{N}}.$$
(1)

- (a) Is \mathcal{F} an orthogonal basis? Is it an orthonormal basis?
- (b) Define the matrix

$$\mathbf{F} = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \dots & \mathbf{f}_N \end{bmatrix}.$$
 (2)

Is \mathbf{F} unitary? What is the inverse of \mathbf{F} ?

- (c) Write down **F** for N = 4. What are the coordinates of $\mathbf{x} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$ corresponding to the basis \mathcal{F} ? What is the FFT of \mathbf{x} ?
- (d) Suppose $\{x_n : n = 0, ..., 3\}$, $\{h_n : n = 0, ..., 3\}$ and $\{y_n : n = 0, ..., 3\}$ are discrete time sequences of length 4. We are also given that y_n is equal to the circular convolution of x_n and h_n , i.e.,

$$y_n = h_n \circledast x_n$$

Defining

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \qquad \mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

we would like to write the relation

$$\mathbf{y} = \mathbf{H}\mathbf{x} \tag{3}$$

Find **H** in terms of h_n , $n = 0, \ldots 3$.

(e) Check out the following multiplication:

$$\mathbf{H}\mathbf{f}_k$$
 (4)

What is your comment about the result?

(f) Pick arbitrary values for $\{h_0, h_1, h_2, h_3\}$. Find the eigenvalues and eigenvectors of **H** using MATLAB, by typing

[V D] = eig(H)

where \mathbf{V} is the matrix containing eigenvectors, and \mathbf{D} is the matrix containing eigenvalues. Compare \mathbf{V} with \mathbf{F} , what is your comment.

- (g) If we change the basis from the standard basis to \$\mathcal{F}\$, what would be the relation between \$\vec{y}\$ and \$\vec{x}\$, where \$\vec{y}\$ and \$\vec{x}\$ are the new coordinate vectors for \$\vec{y}\$ and \$\vec{x}\$ in Eq. (3) respectively, corresponding to basis \$\mathcal{F}\$. In other words find \$\vec{H}\$ where \$\vec{y}\$ = \$\vec{H}\vec{x}\$. What is the effect of basis change as far as the mapping in (3) is concerned? Note that this comment is independent of the values of \$\left{h}_0, h_1, \ldots, h_{N-1}\right\$....
- 2. Complex vs. Real

Let

• $V_1 = \mathcal{C}^n$, i.e., the *n*-dimensional complex vector space, equipped with the inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle_C = \mathbf{y}^* \mathbf{x},$$
 (5)

• $V_2 = \Re^{2n}$, i.e., the 2*n*-dimensional real vector space, equipped with the inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle_R = \mathbf{v}^T \mathbf{u},$$
 (6)

• $\Gamma: \mathcal{C}^n \to \Re^{2n}$ is a mapping between the two vector spaces, where

$$\Gamma(\mathbf{x}) = \begin{bmatrix} \Re e\{\mathbf{x}\} \\ \mathcal{I}m\{\mathbf{x}\} \end{bmatrix},\tag{7}$$

• $\mathbf{A} \in \mathcal{C}^{n \times n}$ define a linear mapping $f : \mathcal{C}^n \to \mathcal{C}^n$, such that for any $\mathbf{x} \in \mathcal{C}^n$

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x},\tag{8}$$

• $g: \Re^{2n} \to \Re^{2n}$ is the mapping corresponding to f such that, for any $\mathbf{x} \in V_1$

$$g(\Gamma(\mathbf{x})) = \Gamma(f(\mathbf{x})). \tag{9}$$

If we explicitly write the linear mapping \mathbf{g} as

$$g(\mathbf{u}) = \mathcal{A}\mathbf{u}, \qquad \forall \mathbf{u} \in \Re^{2n}, \tag{10}$$

- (a) Write \mathcal{A} in terms of \mathbf{A} .
- (b) What type of matrix is \mathcal{A} , if **A** is Hermitian?
- (c) What type of matrix is \mathcal{A} , if **A** is Unitary?
- (d) What type of matrix is \mathcal{A} , if **A** is Skew-Hermitian?
- (e) For $\mathbf{x}, \mathbf{y} \in C^n$, write $\langle \Gamma(\mathbf{x}), \Gamma(\mathbf{y}) \rangle_R$, in terms of $\langle ., . \rangle_C$.
- 3. Polar Form

Show that each nonsingular matrix $A \in \mathbb{C}^{n \times n}$ can be factored as A = RU, where R is hermitian positive definite and U is unitary. (This is the matrix analog of the polar form of a complex number $z = re^{j\Theta}$.) Hint: Consider the use of the matrix AA^* .