Phys 312: Quiz \# 2

Fall 2019

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have One hour.
- Give details of your response to each problem. You will not be given any credit, if it is not clear how you have obtained your response.

1 (12 points) A square loop of wire (of side length a) lies on a table, a distance s from a very long straight wire, which carries a constant current I, as shown below. The loop is pulled away from the loop with a constant speed v. Find the generated emf and the direction of the induced current in the loop.

2 (18 points) Consider an electromagnetic field (E,B) in a homogeneous, isotropic, linear dielectric medium with permittivity ε and permeability μ. Suppose that this medium does not include any free charges or currents, and that there are a real parameter ω and vector-valued functions of space \mathcal{E} and \mathcal{B} such that $\mathbf{E}(\mathbf{r}, t)=\cos (\omega t) \mathcal{E}(\mathbf{r})$ and $\mathbf{B}(\mathbf{r}, t)=\sin (\omega t) \mathcal{B}(\mathbf{r})$. Let $\tilde{\mathcal{E}}(\mathbf{k})$ be the Fourier transform of $\mathcal{E}(\mathbf{r})$, i.e., $\tilde{\mathcal{E}}(\mathbf{k}):=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{-i \mathbf{k} \cdot \mathbf{r}} \mathcal{E}(\mathbf{r}) d^{3} \mathbf{r}$. Use Maxwell's equations to show that $\tilde{\mathcal{E}}(\mathbf{k})=\mathbf{0}$ for $|\mathbf{k}| \neq \sqrt{\mu \varepsilon} \omega$.
Note: You may use the following identity: $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.

1) Ampere law: $\oint \vec{B} \cdot \vec{l}=\mu_{0} I_{\text {encl }}$

Choose the following Amperian loop
By symmetry, we expect \vec{B} in $\hat{\varphi}$ direction in polar cords. Then the Ampere law becomes $B 2 \pi r=\mu_{0}$ I

$$
\Rightarrow \quad \vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\varphi}
$$

Magnetic flux over a surface S is given by

$$
\phi_{B}:=\int_{s} \vec{B} \cdot d \vec{a}
$$

Choose S as the region enclosed by the square loop which is moving with a speed v. Then

$$
\phi_{B}=\int_{S} \frac{\mu_{0} I}{2 \pi s} d a \quad(\text { because } \quad \vec{B} / / \vec{D})
$$

where s is the time dependent distance of the lower edge to the straight wire.
Note that $d_{a}=a d s$, so we hove

$$
\begin{aligned}
& \text { that } d a=a d s, \text { so we hove } \\
& \phi_{B}=\frac{\mu_{0} I \partial}{2 \pi} \int_{s}^{s+2} \frac{d s}{s}=\frac{\mu_{0} I_{0}}{2 \pi}[\log (s+a)-\log s] \\
& T_{0} \text { cancel }
\end{aligned}
$$

To cancel the effect of the motion (Linz low) the current should

$$
\begin{aligned}
f & =-\frac{d}{d t}\left\{\frac{\mu_{0} I \partial}{2 \pi}[\log (s+\partial)-\log s]\right\} \\
& =-\frac{\mu_{0} I \partial}{2 \pi}\left(\frac{1}{s+\partial} \frac{d s}{d t}-\frac{1}{s} \frac{d s}{d t}\right) \\
& =-\frac{\mu_{0} I \partial v}{2 \pi}\left(\frac{1}{s+a}-\frac{1}{s}\right)=\frac{\mu_{0} I \partial^{2} v}{2 \pi s(s+\partial)}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\cos (\omega t) \vec{\varepsilon}(\vec{r}) \\
& \vec{B}(\vec{r}, t)=\sin (\omega t) \vec{B}(\vec{r}) \\
& \tilde{\bar{\varepsilon}}(\vec{k})=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{-i \vec{k} \cdot \vec{r}} \vec{\varepsilon}(\vec{r}) d^{3} \vec{r}
\end{aligned}
$$

Show $\quad \tilde{\vec{\varepsilon}}(\vec{k})=0$ for $|\vec{k}| \neq \sqrt{\mu \varepsilon} \omega$

We have $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \vec{\nabla} \times \vec{B}=\mu \varepsilon \frac{\partial \vec{E}}{\partial t}$

$$
\begin{aligned}
& \text { We have } \nabla \times E=-\frac{\partial}{\partial t} \\
& \frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B})=\frac{\partial}{\partial t}\left(\mu \varepsilon \frac{\partial \vec{E}}{\partial t}\right) \Rightarrow \vec{\nabla} \times \frac{\partial \vec{B}}{d t}=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \Rightarrow \vec{\nabla} \times(-\vec{\nabla} \times \vec{E})=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& \Rightarrow-\vec{\nabla}(\underbrace{(\vec{\nabla} \cdot \vec{E})}_{=0 \text { by Gauss law (no free charge) }}+\nabla^{2} \vec{E}=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& =0
\end{aligned}
$$

$=0$ by Gauss law (no free charge)

$$
\Rightarrow \nabla^{2} \vec{E}=\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

$$
\Rightarrow \quad \cos (\omega t) \nabla^{2} \vec{\varepsilon}=-\mu \varepsilon \omega^{2} \cos (\omega t) \vec{\varepsilon}
$$

$$
\Rightarrow \nabla^{2} \vec{\varepsilon}=-\mu \varepsilon \omega^{2} \vec{\varepsilon}
$$

The general solution to this eq is given by

$$
\begin{aligned}
& \text { general solution to } \\
& \vec{\varepsilon}(\vec{r})=A e^{i \vec{k}^{\prime} \cdot \vec{r}}+B e^{-i \vec{k} \cdot \vec{r}}
\end{aligned}
$$

where $\left|\vec{k}^{\prime}\right|^{2}=\mu \varepsilon \omega^{2}, A, B$ re constants

Now, insert this into the Fourier transform

$$
\begin{aligned}
\tilde{\vec{\varepsilon}}(\vec{k}) & =\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{-i \vec{k} \cdot \vec{r}}\left(A e^{i \vec{k}^{\prime} \cdot \vec{r}}+B e^{-i \vec{k}^{\prime} \cdot \vec{r}}\right) d^{3} \vec{r} \\
& =\frac{1}{(2 \pi)^{1 / 2}}[A \underbrace{\left.\int_{R^{3}} e^{-i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}} \vec{k}^{3}\right)}_{\mathbb{R}^{3}} d^{3} \vec{r}+\underbrace{\left.B \int_{\mathbb{R}^{3}}^{\int} e^{-i\left(\vec{k}+\vec{k}^{\prime}\right) \cdot \vec{r}} d^{3} r\right]}_{\delta^{(3)}\left(\vec{k}+\vec{k}^{1}\right)}
\end{aligned}
$$

Hence $\tilde{\vec{\varepsilon}}(\vec{k})$ is non-zero only when $\vec{k}= \pm \vec{k}$
and $|\vec{k}|^{2}=\mu \varepsilon \omega^{2}$. Hence $\tilde{\vec{\varepsilon}}(\vec{k})$ is non-zero for $|\vec{k}| \neq \sqrt{\mu \varepsilon} \omega$.

