Math 103: Midterm Exam \# 2

Spring 2006

- Write your name and Student ID number in the space provided below and sign.

Student's Name:	
ID Number:	
Signature:	

- You have 75 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$
f(x):=\frac{1}{\sqrt{x+1}}, \quad g(x):=\sqrt{1-x^{2}}
$$

and A denote the interval $(-2,2)$ in \mathbb{R}. Determine the following objects.
Remark: You must express your response in the form of a finite or infinite interval in \mathbb{R} and show how you obtain it. You need not provide a proof for your response.
1.a) Domain of f; (5 points)
1.b) Domain of g; (5 points)
1.c) Image of A under f, i.e., $f(A)$; (5 points)
1.d) Inverse image of A under g, i.e., $g^{-1}(A)$; (10 points)
1.e) Domain of $g \circ f$. (10 points)

Problem 2. Let A and B be nonempty sets and $f: A \rightarrow B$ be a function with domain $\operatorname{Dom}(f)=A$. Let \sim be the relation on the power set 2^{A} of A that is defined by

$$
\forall A_{1}, A_{1} \in 2^{A}, \quad A_{1} \sim A_{2} \quad \text { if } \quad f\left(A_{1}\right) \subseteq f\left(A_{2}\right),
$$

where for every subset A^{\prime} of $A, f\left(A^{\prime}\right)$ denotes the image of A^{\prime} under f.
2.a) Show that in general \sim is not a partial ordering relation on 2^{A}. (15 points)
2.b) Find a condition on f such that \sim is a partial ordering relation on 2^{A}. You must prove that under this condition \sim is a partial ordering relation on 2^{A}. (20 points)

Problem 3. Construct a bijection between $\mathbb{Z}-\{0\}$ and \mathbb{Z}^{+}. You must define

$$
f: \mathbb{Z}-\{0\} \rightarrow \mathbb{Z}^{+}
$$

by giving a formula for $f(n)$ for all $n \in \mathbb{Z}-\{0\}$, and show that f is a bijection (30 points)

