Math 103: Midterm Exam \# 3

Spring 2006

- Write your name and Student ID number in the space provided below and sign.

Student's Name:	
ID Number:	
Signature:	

- You have 80 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let A, B and C be nonempty sets and $f: A \rightarrow B$ and $g: B \rightarrow C$ be arbitrary functions. Prove that

$$
\forall D \subseteq C, \quad(g \circ f)^{-1}(D)=f^{-1}\left(g^{-1}(D)\right)
$$

where for any nonempty sets X and Y, any function $h: X \rightarrow Y$, and any $Z \subseteq Y, h^{-1}(Z)$ denotes the inverse image of Z under h. (20 points)

Problem 2. Let X and Y be nonempty sets. Prove that $|X| \leq|X \times Y|$, where for any set $Z,|Z|$ denotes the cardinality of $Z . \quad$ (20 points)

Problem 3. Let A be a nonempty set and S be the set of all functions $f: A \rightarrow A$ with domain A. Prove that $|A| \leq|S|$, where for any set $Z,|Z|$ denotes the cardinality of Z. (30 points)

Problem 4. Let \mathcal{F} be the set of all sequences $s: \mathbb{Z}^{+} \rightarrow\{0,1\}$ in $\{0,1\}$.
4.a) Show that there is a sequence of distinct terms in \mathcal{F}. (10 points)
4.b) Prove that \mathcal{F} is uncountable. (20 points)

Hint: Try to use Cantor's diagonalization argument.

