Math 103: Final Exam

Spring 2006

- You have two hours and thirty minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

Problem 1. Let A, B, C be nonempty sets, $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions, and for any function h denote by " $\operatorname{Dom}(h)$ " the domain of h. Use the definition of domain and inverse image to prove that $\operatorname{Dom}(g \circ f)=f^{-1}(\operatorname{Dom}(g))$, i.e., domain of $g \circ f$ is the inverse image of the domain of g under f. (15 points)

Problem 2. Prove that the set $A:=(0,1)-\mathbb{Q}$ of irrational numbers belonging to the interval $(0,1)$ is uncountable. (10 points)

Problem 3. We have proven in class that every nonnegative integer n admits a binary expansion, i.e., $\forall n \in \mathbb{N}, \forall i \in \mathbb{N}, \exists a_{i} \in\{0,1\}$, such that $n=\sum_{i=0}^{\infty} a_{i} 2^{i}$, where clearly only finitely many of the coefficients a_{i} can be 1. Prove using induction that the binary expansion of n is unique, i.e., show that " $\forall i \in \mathbb{N}, \exists a_{i}, b_{i} \in\{0,1\}$, such that $\sum_{i=0}^{\infty} a_{i} 2^{i}=\sum_{i=0}^{\infty} b_{i} 2^{i} "$ implies " $\forall i \in \mathbb{N}, a_{i}=b_{i}$. "
(15 points)
Problem 4. Prove that the set \mathcal{F} of finite subsets of \mathbb{N} is countable. (15 points)
Hint: Construct a one-to-one function $f: \mathcal{F} \rightarrow \mathbb{N}$ with domain \mathcal{F} by mapping finite subsets A of \mathbb{N} onto the binary expansion of natural numbers n.

Problem 5. Let S be a set and 2^{S} be its power set. Let C denote the set of cardinal numbers of the elements of 2^{S} and define the relation \leq on C according to:

$$
\alpha \leq \beta \text { if }(\exists A \in \alpha, \exists B \in \beta, \exists \text { a one-to-one function } f: A \rightarrow B \text { with domain } \mathrm{A})
$$

5.a) Prove that $\alpha \leq \beta$ implies
$\forall S \in \alpha, \forall T \in \beta, \exists$ a one-to-one function $g: S \rightarrow T$ with domain S. (10 points)
5.b) Prove that \leq is a partial ordering relation on C. (10 points)

Problem 6. Let $\mathcal{U}:=\{S \mid S$ is a set. $\}$. Prove that \mathcal{U} is not a set. (15 points)
Problem 7. Let A be the subset of \mathbb{R} defined by

$$
A:=\left\{x \in \mathbb{R} \mid \forall n \in \mathbb{Z}^{+}, 0 \leq x<\frac{1}{n}\right\}
$$

7.a) Prove that A has a least upper bound b in \mathbb{R}. (3 points)
7.b) Prove that $b=0 . \quad$ (6 points)

Hint: You may use the statement that $\forall a \in \mathbb{R}^{+}, \exists n \in \mathbb{Z}^{+}, \frac{1}{n}<a$.
7.c) Prove that $A=\{0\} . \quad$ (1 point)

