Math 103 Homework Set # 31

Due on March 28, 2006, at 12:30

1) Let $R: A \to B$ be a relation. The inverse (relation) R^{-1} is defined by

$$R^{-1} := \{ (b, a) \in B \times A | (a, b) \in R \}.$$

Prove that

- 1.1) $Dom(R^{-1}) = Im(R);$
- 1.2) $Im(R^{-1}) = Dom(R);$
- 1.3) $(R^{-1})^{-1} = R$.

where Dom and Im denote the domain and image of the corresponding relation.

2) Let $R_1:A\to B,\,R_2:B\to C$ be two relations. The composite relation $R_2\circ R_1:A\to C$ is defined by

$$R_2 \circ R_1 := \{(a, c) \in A \times C | \exists b \in B \ni (a, b) \in R_1 \land (b, c) \in R_2 \}$$
.

Prove that $(R_2 \circ R_1)^{-1} = R_1^{-1} \circ R_2^{-1}$.

3) Let $f: A \to B$ be a function and $R: A \to A$ be the relation defined by

$$R = \{(x, y) \in A^2 | f(x) = f(y) \}.$$

Show that R is an equivalence relation.

- 4) Let $R: A \to A$ be an equivalence relation. Denote the set of the equivalence classes of R by A/R and let $g: A \to A/R$ be defined by $g(a) = \bar{a}$, where \bar{a} denotes the equivalence class of $a \in A$.
 - 4.1) Prove that g is a function.
 - 4.2) Prove that R can be expressed in the form

$$R = \{(x, y) \in A^2 | f(x) = f(y) \}.$$

5) Let $R:A\to A$ and $S:B\to B$ be partial ordering relations. Let $T:A\times B\to A\times B$ be the relation defined by

$$\forall a_1, a_2 \in A, \ \forall b_1, b_2 \in B, \ T = \{((a_1, b_1), (a_2, b_2)) \mid (a_1, a_2) \in R \land [(a_1 = a_2) \Rightarrow (b_1, b_2) \in S]\}.$$

- 5.1) Prove that T is a partial ordering on $A \times B$.
- 5.2) Let $A = B = \mathbb{R}$ and R and S be the ordinary ordering of numbers. Is the relation T a total ordering on \mathbb{R}^2 ? Why?
- 6) Let \leq be the relation on \mathbb{R}^2 defined by

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$$
, $(x_1, y_1) \leq (x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 \leq x_2^2 + y_2^2$,

where \leq is the ordinary ordering of real numbers.

- 6.1) Is \leq a partial ordering? Why?
- 6.2) Is \leq a total ordering? Why?

 $^{^{1}\}mathrm{Each}$ problem will be graded out of 20 points.