Math 103 Homework Set \# 3 ${ }^{1}$

Due on March 28, 2006, at 12:30

1) Let $R: A \rightarrow B$ be a relation. The inverse (relation) R^{-1} is defined by

$$
R^{-1}:=\{(b, a) \in B \times A \mid(a, b) \in R\}
$$

Prove that
1.1) $\operatorname{Dom}\left(R^{-1}\right)=\operatorname{Im}(R)$;
1.2) $\operatorname{Im}\left(R^{-1}\right)=\operatorname{Dom}(R)$;
1.3) $\left(R^{-1}\right)^{-1}=R$.
where Dom and Im denote the domain and image of the corresponding relation.
2) Let $R_{1}: A \rightarrow B, R_{2}: B \rightarrow C$ be two relations. The composite relation $R_{2} \circ R_{1}: A \rightarrow C$ is defined by

$$
R_{2} \circ R_{1}:=\left\{(a, c) \in A \times C \mid \exists b \in B \ni(a, b) \in R_{1} \wedge(b, c) \in R_{2}\right\}
$$

Prove that $\left(R_{2} \circ R_{1}\right)^{-1}=R_{1}^{-1} \circ R_{2}^{-1}$.
3) Let $f: A \rightarrow B$ be a function and $R: A \rightarrow A$ be the relation defined by

$$
R=\left\{(x, y) \in A^{2} \mid f(x)=f(y)\right\}
$$

Show that R is an equivalence relation.
4) Let $R: A \rightarrow A$ be an equivalence relation. Denote the set of the equivalence classes of R by A / R and let $g: A \rightarrow A / R$ be defined by $g(a)=\bar{a}$, where \bar{a} denotes the equivalence class of $a \in A$.
4.1) Prove that g is a function.
4.2) Prove that R can be expressed in the form

$$
R=\left\{(x, y) \in A^{2} \mid f(x)=f(y)\right\}
$$

5) Let $R: A \rightarrow A$ and $S: B \rightarrow B$ be partial ordering relations. Let $T: A \times B \rightarrow A \times B$ be the relation defined by

$$
\forall a_{1}, a_{2} \in A, \quad \forall b_{1}, b_{2} \in B, \quad T=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \mid\left(a_{1}, a_{2}\right) \in R \wedge\left[\left(a_{1}=a_{2}\right) \Rightarrow\left(b_{1}, b_{2}\right) \in S\right]\right\}
$$

5.1) Prove that T is a partial ordering on $A \times B$.
5.2) Let $A=B=\mathbb{R}$ and R and S be the ordinary ordering of numbers. Is the relation T a total ordering on \mathbb{R}^{2} ? Why?
6) Let \preceq be the relation on \mathbb{R}^{2} defined by

$$
\forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}, \quad\left(x_{1}, y_{1}\right) \preceq\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}^{2}+y_{1}^{2} \leq x_{2}^{2}+y_{2}^{2}
$$

where \leq is the ordinary ordering of real numbers.
6.1) Is \preceq a partial ordering? Why?
6.2) Is \preceq a total ordering? Why?

[^0]
[^0]: ${ }^{1}$ Each problem will be graded out of 20 points.

