Math 103 Homework Set \# 4 ${ }^{1}$

Due on April 11, 2006, at 12:30

Let $\tau:=\{1,2\}, A_{1}:=\{a, b\}, A_{2}:=\{x, y, z\}, A_{1}^{\prime}:=\{b\}$ and $A_{2}^{\prime}:=\{x, z\}$. Let F denote the set of all functions $f: A_{1} \rightarrow A_{2}$ whose domain is A_{1}.

1) Determine all the elements of F.
2) Determine those elements of F which are onto and those which are one-to-one.
3) Determine the image of A_{1}^{\prime} and the inverse image of A_{2}^{\prime} under the elements of F.
4) Find all functions $g: \tau \rightarrow A_{1} \cup A_{2}$ whose domain is τ and satisfy

$$
\forall \alpha \in \tau, \quad g(\alpha) \in A_{\alpha} .
$$

5) Let S denote the set of all functions $g: \tau \rightarrow A_{1} \cup A_{2}$ which satisfy the conditions of Problem 4. Let $h: S \rightarrow A_{1} \times A_{2}$ be the function defined by $h(g):=(g(1), g(2))$, prove that h is a bijection.
6) Let $f: A \rightarrow B$ be a function and A_{1} and A_{2} be subsets of A. Prove that in general $f\left(A_{1} \cap A_{2}\right) \neq f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
[^0]
[^0]: ${ }^{1}$ Each problem will be graded out of 20 points.

