Math 103 Homework Set \# 5

Due on April 25, 2006, at 12:30
I) In the following X and Y are nonempty sets, $A, B \subseteq X, f: X \rightarrow Y$ is a function, and $g: X \rightarrow Y$ is a one-to-one function.

1) Prove that $f(A \cup B)=f(A) \cup f(B)$. (10 points)
2) Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$. (10 points)
3) Give an example of a function f for which $f(A \cap B) \neq f(A) \cap f(B)$. (10 points)
4) Prove that $g(A \cap B)=g(A) \cap g(B)$. (10 points)
5) Prove that $g(X-A)=g(X)-g(A)$. (10 points)
6) Prove that $g^{-1}(g(A))=A$. (10 points)

DO NOT CONFUSE the inverse of a function and the inverse image of a subset under a function. The nature of the argument of a symbol will determine if it stands for the inverse of a function of the inverse image of a subset under a function.
II) Construct a bijection $f: A \rightarrow B$ for the following choices of the sets A and B. In each case prove that f is a bijection.
7) $A=\{2 n \mid n \in \mathbb{Z}\}$ and $B=\left\{3 m \mid m \in \mathbb{Z}^{+}\right\} . \quad$ (20 points)
8) $A=(0,1)$ and $B=(a, b)$ where a and b are two arbitrary and distinct real numbers. (20 points)

