Math 103 Homework Set \# 6

Due on May 09, 2006, at 12:30

1) Let $n \in \mathbb{Z}^{+}$and for every $i \in\{1,2, \cdots, n\}, A_{i}$ be a countably infinite set. Prove that $\bigcup_{i=1}^{n} A_{i}$ is countably infinite. (20 points)
2) Let $\left\{A_{i}\right\}_{i \in \mathbb{Z}^{+}}$be a family of countably infinite sets A_{i}. Is $\bigcup_{i \in \mathbb{Z}^{+}} A_{i}$ countably infinite? Prove your response. (20 points)
3) Let $f: A \rightarrow B$ be a one-to-one function with $\operatorname{Dom}(f)=A$. Show that if B is countable, then so is A. (20 points)
4) Let $f: A \rightarrow B$ be an onto function with $\operatorname{Dom}(f)=A$. Show that if A is countable, then so is B. (20 points)
5) Prove that if an uncountable set is partitioned into a finite number of its subsets then at least one of these subsets must be uncountable. (20 points)
6) Let A be an uncountable set, τ be a countable index set, and $\left\{A_{\alpha}\right\}_{\alpha \in \tau}$ be a partition of A. Does this imply that at least one of A_{α} 's must be uncountable? Why? (20 points)
