Complete Induction:

In class we have proved the following theorem using the Induction Axiom.
Theorem 1 (Principle of Mathematical Induction): Let $\forall n \in \mathbb{Z}^{+}$, p_{n} be a statement satisfying the following two conditions.
(1) p_{1} is true;
(2) $\forall k \in \mathbb{Z}^{+}, p_{k} \Rightarrow p_{k+1}$.

Then p_{n} is true $\forall n \in \mathbb{Z}^{+}$.
The aim of this note is to use this theorem to prove the following.
Theorem 2 (Principle of Complete Induction): Let $\forall n \in \mathbb{Z}^{+}, p_{n}$ be a statement satisfying the following two conditions.
(1) p_{1} is true;
$\left(2^{\prime}\right) \forall k \in \mathbb{Z}^{+},\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k}\right) \Rightarrow p_{k+1}$.
Then p_{n} is true $\forall n \in \mathbb{Z}^{+}$.

Proof: It is sufficient to show that condition (2) of Theorem 1 holds. According to (2'), $\forall k \in \mathbb{Z}^{+}$, $\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k-1} \wedge p_{k}\right) \Rightarrow p_{k+1}$. Let $q_{k}:=p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k-1}$. Then in view of the identities:

$$
(a \Rightarrow b) \Leftrightarrow(\sim a \vee b), \quad(\sim(a \wedge b)) \Leftrightarrow(\sim a \vee \sim b)
$$

we have

$$
\begin{align*}
\left(\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k-1} \wedge p_{k}\right) \Rightarrow p_{k+1}\right) & \Leftrightarrow\left(\left(q_{k} \wedge p_{k}\right) \Rightarrow p_{k+1}\right) \\
& \Leftrightarrow\left(\left(\sim\left(q_{k} \wedge p_{k}\right)\right) \vee p_{k+1}\right) \\
& \Leftrightarrow\left(\left(\sim q_{k} \vee \sim p_{k}\right) \vee p_{k+1}\right) \\
& \Leftrightarrow\left(\sim q_{k} \vee\left(\sim p_{k} \vee p_{k+1}\right)\right) \\
& \Leftrightarrow \sim q_{k} \vee\left(p_{k} \Rightarrow p_{k+1}\right)
\end{align*}
$$

Therefore, according to $\left(2^{\prime}\right), \sim q_{k} \vee\left(p_{k} \Rightarrow p_{k+1}\right)$ is true. We will show that this implies that $p_{k} \Rightarrow p_{k+1}$ is true by proving that $\sim q_{k}$ is false, i.e., q_{k} is true. We do this using both (1) and (2').

Assume by contradiction that q_{k} is false. Because $q_{k}:=p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k-1}$ this implies that there is $j_{1}<k$ such that $p_{j_{1}}$ is false. Now because $j_{1} \in \mathbb{Z}^{+}$according to (2 ') we have $\left(p_{1} \wedge \cdots \wedge p_{j_{1}-1}\right) \Rightarrow p_{j_{1}}$. Hence $p_{j_{1}}$ is false only if $p_{1} \wedge \cdots \wedge p_{j_{1}-1}$ is false. This in turn implies that there is $j_{2}<j_{1}$ such that $p_{j_{2}}$ is false. Again $j_{2} \in \mathbb{Z}^{+}$and (2') implies $\left(p_{1} \wedge \cdots \wedge p_{j_{2}-1}\right) \Rightarrow p_{j_{2}}$, so $p_{1} \wedge \cdots \wedge p_{j_{2}-1}$ must be false. This means that there is $j_{3}<j_{2}$ such that $p_{j_{3}}$ is false. If we continue this argument ℓ times we find $j_{\ell}<j_{\ell-1}<\cdots<j_{2}<j_{1}<k$ such that $p_{j_{\ell}}$ is false. Therefore, at most for $\ell=k-1$, we find that p_{1} must be false which contradicts (1). Hence by contradiction q_{k} is true, and $\sim q_{k}$ is false. This together with the fact (established above) that $\sim q_{k} \vee\left(p_{k} \Rightarrow p_{k+1}\right)$ is true implies that $p_{k} \Rightarrow p_{k+1}$ must be true. Hence (2) holds. Because (1) also holds by the hypothesis of Theorem 2, both the conditions of Theorem 1 are satisfied. Hence p_{n} is true for all $n \in \mathbb{Z}^{+}$.

Remark: According to the identity $(\star), p_{k} \Rightarrow p_{k+1}$ implies $\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{k-1} \wedge p_{k}\right) \Rightarrow p_{k+1}$. Hence if condition (2) of Theorem 1 holds, so does condition (2') of Theorem 2. This means that not only Theorem 1 implies Theorem 2, but the opposite is also true, i.e., these two theorems are equivalent.

