Math 103: Midterm Exam 2

Fall 2007

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have two hours.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1.

1.a) Give the definition of an inductive set. (2 points)
1.b) Give the definition of the set \mathbb{N} of natural numbers. (2 points)
1.c) Prove that \mathbb{N} is an inductive set. (6 points)

Problem 2. Let A, B, C be nonempty sets, $X \subseteq A \times B$ and $Y \subseteq B \times C$ be relations. Prove that $(Y \circ X)^{-1}=X^{-1} \circ Y^{-1} . \quad(15$ points)

Problem 3. Let S be a nonempty set and $R \subseteq S^{2}$ be a reflexive and transitive relation.
3.1) Prove that $E:=\left\{(x, y) \in S^{2} \left\lvert\,\left(\begin{array}{ll}x & R\end{array}\right) \wedge\left(\begin{array}{ll}y & R\end{array}\right)\right.\right\}$ is an equivalence relation. (10 points)
3.2) Prove that $P:=\left\{(A, B) \in(S / E)^{2} \mid \exists a \in A, \exists b \in B, a R b\right\}$ is a partial ordering relation. (10 points)

Problem 4. Let A, B be sets, $C \subseteq A, C^{c}$ be the complement of C in A, and $f: A \rightarrow B$ be a one-to-one function. Prove that $f\left(C^{c}\right)=\operatorname{Ran}(f) \backslash f(C)$. (15 points)

Problem 5. Let (A, \preccurlyeq) be a poset and $s: \mathbb{Z}^{+} \rightarrow A$ be a sequence in A.
5.1) Give the definition of a subsequence of s. (5 points)
5.2) Prove that if s is an increasing sequence, every subsequence of s is also an increasing sequence. (10 points)

Problem 6. Let A and B be finite sets. Prove that A is equivalent to B if and only if $\operatorname{Ord}(A)=\operatorname{Ord}(B) \quad(10$ points $)$

Problem 7. Let $A:=\left\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}, n=m^{2}\right\}$. Prove that A is an infinite set. (15 points)

