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3.4.2 Direct Proof

The most straightforward method of proving an implication a ⇒ b is to assume that its hypoth-
esis (a) is true and show that its conclusion (b) is true. This is called a direct proof. Unlike
the method of trivial proof, this method may be applied to any implication. The following is an
example.

Proposition 3.4.1 Let m, n, p be integers. If m divides n and n divides p, then m divides p,

i.e., (m|n ∧ n|p) ⇒ m|p.
Proof: Suppose that the hypothesis, m|n ∧ n|p, is true. Then, according to Definition 3.1.1,
∃j ∈ Z, n = jm and ∃k ∈ Z, p = kn. Therefore, if we let q := jk, then q ∈ Z and p = kn =
kjm = qm. This shows the existence of an integer q satisfying p = qm and establishes the
conclusion of the theorem, namely m|p. �

3.4.3 Contrapositive Proof

In our discussion of Propositional Calculus, we encountered the logical equivalence of any im-
plication a ⇒ b and its contrapositive ¬b ⇒ ¬a. This means that these two implications have
the same truth value. In particular, to establish a ⇒ b we can show that ¬b ⇒ ¬a is true. This
is called the method of contrapositive proof . Similarly to the method of direct proof, this
method is generally applicable. It is more useful than the direct proof whenever the negation of
the hypothesis or the conclusion has a simpler form or is related to definitions and previously
proven theorems more closely. The following is a good example.

Proposition 3.4.2 For every integer n, if n2 is even, then so is n, i.e.,

2|n2 ⇒ 2|n. (3.9)

Proof: Let a :=“ 2|n2 ” and b :=“ 2|n ,” so that (3.9) takes the form a ⇒ b. It is sufficient
to prove the contrapositive implication: ¬b ⇒ ¬a. This is an implication in its own right, and
we can apply the method of direct proof to prove it. We suppose that ¬b is true, i.e., b is false.
This means that n is not an even number. So it must be odd. This in turn implies that the
remainder of the division of n by 2 is 1, i.e., ∃k ∈ Z, n = 2k + 1. But then,

n2 = (2k + 1)2 = 4k(k + 1) + 1.

If we let j := 2k(k + 1), we can write n2 = 2j + 1. Because j ∈ Z, this equation implies that n2

is not even, a is false, and ¬a is true. �

3.4.4 Deductive Proof

In Section 2.5 (Theorem 2.5.2) we showed that for any three statements a, b, and c, the compound
statement (a ⇒ c) ∧ (c ⇒ b) implies a ⇒ b. In other words, in order to establish that a ⇒ b is
true, it is sufficient to show that (a ⇒ c) ∧ (c ⇒ b) holds. This is the basic idea of deductive

reasoning. Using the notation we introduced in (2.13) we can write (a ⇒ c) ∧ (c ⇒ b) in the
form a ⇒ c ⇒ b, and express the statement of Theorem 2.5.2 as: “The compound statement

(a ⇒ c ⇒ b) ⇒ (a ⇒ b) (3.10)

is a tautology.” We can easily generalize it:

Theorem 3.4.1 Let n ∈ Z
+ and c1, c2, · · · , cn, a, b be statements. Then the following is a

tautology

t := ( (a ⇒ c1 ⇒ c2 ⇒ · · · ⇒ cn ⇒ b) ⇒ (a ⇒ b) ). (3.11)

Proof: If n = 1, this is just the statement of Theorem 2.5.2. Therefore we consider the case
n ≥ 2. First, we express t in the form

t = (f ⇒ g), (3.12)
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where f := (a ⇒ c1 ⇒ c2 ⇒ · · · ⇒ cn ⇒ b) and g := (a ⇒ b). We recall that according to (2.13),

f = ( (a ⇒ c1) ∧ (c1 ⇒ c2) ∧ · · · ∧ (cn−1 ⇒ cn) ∧ (cn ⇒ b) ). (3.13)

Next, we examine if it is possible for t to be false. The proof will be complete, if we succeed in
showing that this is not the case. In order for t to be false, its hypothesis f must be true and
its conclusion g must be false. According to (3.13), f is true only if all the implications a ⇒ c1,
c1 ⇒ c2, · · · , cn−1 ⇒ cn, and cn ⇒ b are true. Furthermore, g is false provided that a is true
and b is false. Now, because a and a ⇒ c1 are true, c1 must be true. Because c1 and c1 ⇒ c2 are
true, c2 must be true. Repeating this argument, we find that because cn and cn ⇒ b are true, b

must be true. But we already mentioned that b is false. This shows that it is not possible for
t to be false; it is true regardless of the truth values of a, c1, c2, · · · , cn and b. Therefore, it is a
tautology. �

This theorem provides the logical basis for the method of proof by deduction. It states that in

order to establish the validity of an implication a ⇒ b, we may introduce a number (n ∈ Z
+) of

intermediate statements c1, c2, · · · , cn and prove the implications a ⇒ c1, c1 ⇒ c2, · · · , cn−1 ⇒ cn,

and cn ⇒ b. The main motivation for this method is that it reduces the problem of proving
a given implication a ⇒ b into that of a number of intermediate implications that may admit
simpler proofs. Many of the proofs we have so far given make use of this method. Indeed, we
employ it whenever we engage in a logical argument.

In the following we first give a proof of the statement d :=“sum of two even integers is even.”
and then identify the intermediate deductive steps of this proof.

Proof of d: For every pair m and n of even integer, 2|m and 2|n, i.e., there are integers j and
k such that m = 2j and n = 2k. Then m + n = 2(j + k). Because j and k are integers, so is
i := j + k. Therefore, there is an integer i such that m + n = 2i. This shows that 2|(m + n),
i.e., m + n is even. �

Analysis of the deductive structure of the preceding proof : Let p(x) be the predicate

p(x) := 2|x := “ ∃k ∈ Z, x = 2k, ” (3.14)

with an integer variable x. Then,

d = (∀m, n ∈ Z, ((p(m) ∧ p(n)) ⇒ (p(m + n))). (3.15)

Let ∀m, n ∈ Z, f := p(m), g := p(n), a := f ∧ g, and b := p(m + n). Then d is equivalent to
“∀m, n ∈ Z, a ⇒ b.” The above proof involves the following chain of implications.

a ⇒ (∃j, k ∈ Z, (m = 2j) ∧ (n = 2k)) ⇒ ((m + n = 2(k + j)) ∧ (k + j ∈ Z)) ⇒ b.

3.5 Proof by Contradiction

Suppose that we wish to prove the statement a of a theorem. We can achieve this by showing
that its negation ¬a is false. One way of doing this is to find a statement b such that (i) ¬a ⇒ b

is true, and (ii) b is false. Recalling the fact that the only way in which an implication with a
false conclusion is true is that its hypothesis is false, we see that conditions (i) and (ii) imply
that ¬a is false. Hence a must be true. This argument forms the logical basis of the method of
proof by contradiction. A successful application of this method involves three steps, namely

1. finding an appropriate argument b,

2. proving ¬a ⇒ b, and

3. proving that b is false.


