where P is the set of people.
Problem 5.2 Let R_{1}, R_{2}, R_{3} be the relations given in Problem 5.1, determine $R_{1}(\{y o u\})$, $R_{2}(\{y o u\}), R_{3}(\{y o u\}), R_{1}^{-1}(\{y o u\}), R_{2}^{-1}(\{y o u\}), R_{3}^{-1}(\{y o u\})$.

Problem 5.3 Let $R:=\left\{(m, n) \in \mathbb{Z}^{2} \mid 0<m-n<3\right\}$, find $\operatorname{Dom}(R), \operatorname{Ran}(R), R(\{-1,1\})$, and $R^{-1}(\{-1,1\})$.

Problem 5.4 Let $f:=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{1}{\sqrt{x}}\right.\right\}$ and I be the interval $(-2,4]$. Find $\operatorname{Dom}(f)$, $\operatorname{Ran}(f), f(I)$ and $f^{-1}(I)$.

Problem 5.5 Let A and B be sets, $C \subseteq A, D \subseteq B$, and $R \subseteq A \times B$ be a relation. Show that
(a) If $\operatorname{Dom}(R) \subseteq C$, then $R(C)=\operatorname{Ran}(R)$. In particular, $R(\operatorname{Dom}(R))=\operatorname{Ran}(R)$.
(b) If $\operatorname{Ran}(R) \subseteq D$, then $R^{-1}(D)=\operatorname{Dom}(R)$. In particular, $R^{-1}(\operatorname{Ran}(R))=\operatorname{Dom}(R)$.

Problem 5.6 Let A and B be nonempty sets, and $R \subseteq A \times B$. Show that $\operatorname{Dom}(R)=A$ if and only if $\forall a \in A, \exists b \in B, a R b$, i.e., $A \subseteq \operatorname{Dom}(R)$.

Problem 5.7 Use Definition 5.1.3 to prove that equal relations have equal ranges.
Problem 5.8 Let A and B be nonempty sets, $R \subseteq A \times B, C$ be a nonempty subset of A, and $\left.R\right|_{C}$ be the restriction of R to C. Prove the following statements.
(a) $\left.R\right|_{C} \subseteq R$;
(b) $\operatorname{Dom}\left(\left.R\right|_{C}\right)=C \cap \operatorname{Dom}(R)$;
(c) $\operatorname{Ran}\left(\left.R\right|_{C}\right)=R(C)$;
(d) If $\operatorname{Dom}(R) \subseteq C$, then $\left.R\right|_{C}=R$.

Problem 5.9 Determine whether the relations given in Problems 5.1, 5.3 and 5.4 are reflexive, symmetric, antisymmetric, or transitive.

Problem 5.10 Prove that a relation R is symmetric if and only if it is equal to the inverse relation R^{-1}.

Problem 5.11 Let R be a relation. Prove that the following statements are logically equivalent.
$\mathfrak{a}:=(R=\varnothing) ;$
$\mathfrak{b}:=(\operatorname{Dom}(R)=\varnothing) ;$
$\mathfrak{c}:=(\operatorname{Ran}(R)=\varnothing)$.
Problem 5.12 Let A, B, C be nonempty sets, $A^{\prime} \subseteq A$, and $R \subseteq A \times B, S \subseteq B \times C$ be relations. Show that
(a) $(S \circ R=\varnothing) \Leftrightarrow(\operatorname{Dom}(S) \cap \operatorname{Ran}(R)=\varnothing)$;
(b) $(S \circ R)\left(A^{\prime}\right)=S\left(R\left(A^{\prime}\right)\right)$;
(c) $\operatorname{Ran}(S \circ R)=S(\operatorname{Ran}(R))$.

Problem 5.13 Let P be the set of people, $S:=\left\{(a, b) \in P^{2} \mid a\right.$ is b 's sister. $\}$, and $U:=$ $\left\{(a, b) \in P^{2} \mid a\right.$ is b 's uncle. $\}$. Determine
(a) the domain and range of S and U;
(b) the relations $S^{2}:=S \circ S$ and $U^{2}:=U \circ U$;
(c) the relations $S \circ S^{-1}$ and $U \circ U^{-1}$;
(d) the relations $S \circ U$ and $U \circ S$;
(e) the relations $(S \circ U)^{-1}$ and $(U \circ S)^{-1}$;
(f) the relations $S^{-1} \circ U^{-1}$ and $U^{-1} \circ S^{-1}$;
(g) the relation $S \circ U \circ S$ and its domain and range.

Problem 5.14 Let R be a relation. Show that $\operatorname{Dom}\left(R^{-1} \circ R\right)=\operatorname{Ran}\left(R^{-1} \circ R\right)=\operatorname{Dom}(R)$.
Problem 5.15 Let R be a relation. Show that
(a) $\operatorname{Id}_{\text {Dom }(R)} \subseteq R^{-1} \circ R$;
(b) $\operatorname{Id}_{\operatorname{Ran}(R)} \subseteq R \circ R^{-1}$.

Problem 5.16 Let $R:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x-y \leq 1\right\}$.
(a) Find the domain of R;
(b) Find the image of of the interval $(-1,1)$ under R;
(c) Find the inverse image of the interval $[1,2]$ under R;
(d) Determine if R is reflexive, symmetric, antisymmetric, or transitive.

Problem 5.17 Let S be a set and \sim be an equivalence relation in S. Prove that S / \sim is a set.
Problem 5.18 Let A be a nonempty set, $\left\{A_{\alpha}\right\}_{\alpha \in \mathfrak{B}}$ be a partition of A, and

$$
\approx:=\left\{(a, b) \in A^{2} \mid \exists \alpha \in \mathfrak{B},\left(a \in A_{\alpha}\right) \wedge\left(b \in A_{\alpha}\right)\right\} .
$$

(a) Show that \approx is an equivalence relation.
(b) Show that $A / \approx=\left\{A_{\alpha}\right\}_{\alpha \in \mathfrak{B}}$.

Problem 5.19 Find all possible equivalence relations in the set $A:=\{1,2,3,4\}$.
Problem 5.20 Let $A_{n}:=\{1,2,3, \cdots, n\}$. Determine the number of partitions of A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, and A_{7}. Obtain a formula for the number of partitions of A_{n} for all $n \in \mathbb{Z}^{+}$.
Hint: Consider the cases of even and odd n separately, and note that for all $m, n \in \mathbb{Z}^{+}$, with $m \leq n$, there are $\binom{n}{m}:=\frac{n!}{m!(n-m)!}$ ways to choose m objects out of n objects.

Problem 5.21 Show that the causal relation (5.7) is a partial ordering relation which is not a total ordering.

Problem 5.22 Let S be a nonempty set and $R \subseteq S^{2}$ be a reflexive and transitive relation.
(a) Show that $\sim:=\left\{(a, b) \in S^{2} \mid(a R b) \wedge(b R a)\right\}$ is an equivalence relation.
(b) Show that $\preccurlyeq:=\left\{(A, B) \in(S / \sim)^{2} \mid \exists a \in A, \exists b \in B, a R b\right\}$ is a partial ordering relation.
(c) Show that if for all $a, b \in S$ either $a R b$ or $b R a$, then \preccurlyeq is a total ordering.

