where P is the set of people.

Problem 5.2 Let R_1 , R_2 , R_3 be the relations given in Problem 5.1, determine $R_1(\{you\})$, $R_2(\{you\})$, $R_3^{-1}(\{you\})$, $R_1^{-1}(\{you\})$, $R_2^{-1}(\{you\})$, $R_3^{-1}(\{you\})$.

Problem 5.3 Let $R := \{(m, n) \in \mathbb{Z}^2 \mid 0 < m - n < 3\}$, find Dom(R), Ran(R), $R(\{-1, 1\})$, and $R^{-1}(\{-1, 1\})$.

Problem 5.4 Let $f := \{(x, y) \in \mathbb{R}^2 \mid y = \frac{1}{\sqrt{x}}\}$ and I be the interval (-2, 4]. Find Dom(f), Ran(f), f(I) and $f^{-1}(I)$.

Problem 5.5 Let A and B be sets, $C \subseteq A$, $D \subseteq B$, and $R \subseteq A \times B$ be a relation. Show that

- (a) If $\text{Dom}(R) \subseteq C$, then R(C) = Ran(R). In particular, R(Dom(R)) = Ran(R).
- (b) If $\operatorname{Ran}(R) \subseteq D$, then $R^{-1}(D) = \operatorname{Dom}(R)$. In particular, $R^{-1}(\operatorname{Ran}(R)) = \operatorname{Dom}(R)$.

Problem 5.6 Let A and B be nonempty sets, and $R \subseteq A \times B$. Show that Dom(R) = A if and only if $\forall a \in A, \exists b \in B, a \in B, b, i.e., A \subseteq \text{Dom}(R)$.

Problem 5.7 Use Definition 5.1.3 to prove that equal relations have equal ranges.

Problem 5.8 Let A and B be nonempty sets, $R \subseteq A \times B$, C be a nonempty subset of A, and $R|_{C}$ be the restriction of R to C. Prove the following statements.

- (a) $R|_C \subseteq R;$
- (b) $\operatorname{Dom}(R|_C) = C \cap \operatorname{Dom}(R);$
- (c) $\operatorname{Ran}(R|_{C}) = R(C);$
- (d) If $\text{Dom}(R) \subseteq C$, then $R|_C = R$.

Problem 5.9 Determine whether the relations given in Problems 5.1, 5.3 and 5.4 are reflexive, symmetric, antisymmetric, or transitive.

Problem 5.10 Prove that a relation R is symmetric if and only if it is equal to the inverse relation R^{-1} .

Problem 5.11 Let R be a relation. Prove that the following statements are logically equivalent.

 $\mathfrak{a} := (R = \varnothing);$ $\mathfrak{b} := (\operatorname{Dom}(R) = \varnothing);$ $\mathfrak{c} := (\operatorname{Ran}(R) = \varnothing).$

Problem 5.12 Let A, B, C be nonempty sets, $A' \subseteq A$, and $R \subseteq A \times B, S \subseteq B \times C$ be relations. Show that

- (a) $(S \circ R = \emptyset) \Leftrightarrow (\text{Dom}(S) \cap \text{Ran}(R) = \emptyset);$
- (b) $(S \circ R)(A') = S(R(A'));$
- (c) $\operatorname{Ran}(S \circ R) = S(\operatorname{Ran}(R)).$

Problem 5.13 Let P be the set of people, $S := \{(a,b) \in P^2 \mid a \text{ is } b\text{'s sister.}\}$, and $U := \{(a,b) \in P^2 \mid a \text{ is } b\text{'s uncle.}\}$. Determine

- (a) the domain and range of S and U;
- (b) the relations $S^2 := S \circ S$ and $U^2 := U \circ U$;
- (c) the relations $S \circ S^{-1}$ and $U \circ U^{-1}$;
- (d) the relations $S \circ U$ and $U \circ S$;
- (e) the relations $(S \circ U)^{-1}$ and $(U \circ S)^{-1}$;
- (f) the relations $S^{-1} \circ U^{-1}$ and $U^{-1} \circ S^{-1}$;
- (g) the relation $S \circ U \circ S$ and its domain and range.

Problem 5.14 Let R be a relation. Show that $Dom(R^{-1} \circ R) = Ran(R^{-1} \circ R) = Dom(R)$.

Problem 5.15 Let R be a relation. Show that

- (a) $\operatorname{Id}_{\operatorname{Dom}(R)} \subseteq R^{-1} \circ R;$
- (b) $\operatorname{Id}_{\operatorname{Ran}(R)} \subseteq R \circ R^{-1}$.

Problem 5.16 Let $R := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x - y \le 1\}.$

- (a) Find the domain of R;
- (b) Find the image of the interval (-1, 1) under R;
- (c) Find the inverse image of the interval [1, 2] under R;
- (d) Determine if R is reflexive, symmetric, antisymmetric, or transitive.

Problem 5.17 Let S be a set and ~ be an equivalence relation in S. Prove that S/\sim is a set.

Problem 5.18 Let A be a nonempty set, $\{A_{\alpha}\}_{\alpha \in \mathfrak{B}}$ be a partition of A, and

$$\Rightarrow := \{(a,b) \in A^2 \mid \exists \alpha \in \mathfrak{B}, (a \in A_\alpha) \land (b \in A_\alpha) \}.$$

- (a) Show that \Rightarrow is an equivalence relation.
- (b) Show that $A/\approx = \{A_{\alpha}\}_{\alpha \in \mathfrak{B}}$.

Problem 5.19 Find all possible equivalence relations in the set $A := \{1, 2, 3, 4\}$.

Problem 5.20 Let $A_n := \{1, 2, 3, \dots, n\}$. Determine the number of partitions of A_2 , A_3 , A_4 , A_5 , A_6 , and A_7 . Obtain a formula for the number of partitions of A_n for all $n \in \mathbb{Z}^+$. *Hint:* Consider the cases of even and odd n separately, and note that for all $m, n \in \mathbb{Z}^+$, with $m \leq n$, there are $\binom{n}{m} := \frac{n!}{m!(n-m)!}$ ways to choose m objects out of n objects.

Problem 5.21 Show that the causal relation (5.7) is a partial ordering relation which is not a total ordering.

Problem 5.22 Let S be a nonempty set and $R \subseteq S^2$ be a reflexive and transitive relation.

- (a) Show that $\sim := \{(a, b) \in S^2 \mid (a \ R \ b) \land (b \ R \ a) \}$ is an equivalence relation.
- (b) Show that $\preccurlyeq := \{(A, B) \in (S/\sim)^2 \mid \exists a \in A, \exists b \in B, a \ R \ b \}$ is a partial ordering relation.
- (c) Show that if for all $a, b \in S$ either $a \ R \ b$ or $b \ R \ a$, then \preccurlyeq is a total ordering.