Problems

Problem 2.1 Specify the truth value of the following statements and determine their negation.

$$
\begin{aligned}
& \mathfrak{a}_{1}:=(\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x<y) \\
& \mathfrak{a}_{2}:=(\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, x<y) \\
& \mathfrak{a}_{3}:=(\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x<y) \\
& \mathfrak{a}_{4}:=(\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, x<y) \\
& \mathfrak{a}_{5}:=(\exists x \in \mathbb{N}, \exists y \in \mathbb{N}, x<y) \\
& \mathfrak{a}_{6}:=(\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x<y)
\end{aligned}
$$

Problem 2.2 Let $\mathfrak{p}(x)$ be a predicate depending on a variable x that takes values in a set A. Express the negation of the statement " $\exists!x \in A, \mathfrak{p}(x)$ " using mathematical symbols.

Problem 2.3 Obtain a solution of Exercise 2.5.3 and a proof of part (b) of Theorem 2.6.1 by constructing the relevant truth tables.

Problem 2.4 Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be statements. Prove that $(\mathfrak{a} \Leftrightarrow \mathfrak{b}) \Leftrightarrow \mathfrak{c}$ is logically equivalent to $\mathfrak{a} \Leftrightarrow(\mathfrak{b} \Leftrightarrow \mathfrak{c})$, i.e., \Leftrightarrow is an associative operation.

Problem 2.5 Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be statements. Determine if the following compound statements are tautologies.

$$
\begin{aligned}
& \mathfrak{d}_{1}:=(\mathfrak{a} \Leftrightarrow(\mathfrak{b} \wedge \mathfrak{c})) \Leftrightarrow((\mathfrak{a} \Leftrightarrow \mathfrak{b}) \wedge(\mathfrak{a} \Leftrightarrow \mathfrak{c})) \\
& \mathfrak{d}_{2}:=(\mathfrak{a} \Leftrightarrow(\mathfrak{b} \vee \mathfrak{c})) \Leftrightarrow((\mathfrak{a} \Leftrightarrow \mathfrak{b}) \vee(\mathfrak{a} \Leftrightarrow \mathfrak{c})) \\
& \mathfrak{d}_{3}:=(\mathfrak{a} \Leftrightarrow(\mathfrak{b} \Rightarrow \mathfrak{c})) \Leftrightarrow((\mathfrak{a} \Leftrightarrow \mathfrak{b}) \Rightarrow(\mathfrak{a} \Leftrightarrow \mathfrak{c}))
\end{aligned}
$$

Problem 2.6 Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{a}^{\prime}, \mathfrak{b}^{\prime}$ be statements such that $\mathfrak{a} \Leftrightarrow \mathfrak{a}^{\prime}$ and $\mathfrak{b} \Leftrightarrow \mathfrak{b}^{\prime}$. Prove that the following compound statements are tautologies.

$$
\begin{aligned}
& \mathfrak{c}_{1}:=\left((\mathfrak{a} \wedge \mathfrak{b}) \Leftrightarrow\left(\mathfrak{a}^{\prime} \wedge \mathfrak{b}^{\prime}\right)\right) . \\
& \mathfrak{c}_{2}:=\left((\mathfrak{a} \vee \mathfrak{b}) \Leftrightarrow\left(\mathfrak{a}^{\prime} \vee \mathfrak{b}^{\prime}\right)\right) . \\
& \mathfrak{c}_{3}:=\left((\mathfrak{a} \Rightarrow \mathfrak{b}) \Leftrightarrow\left(\mathfrak{a}^{\prime} \Rightarrow \mathfrak{b}^{\prime}\right)\right) .
\end{aligned}
$$

Problem 2.7 Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be statements, $\mathfrak{d}:=(\neg \mathfrak{a} \Rightarrow(\mathfrak{b} \Rightarrow \mathfrak{c}))$, and $\mathfrak{e}:=(\neg(\mathfrak{a} \Rightarrow \mathfrak{b}) \Rightarrow \mathfrak{c})$. Determine whether $\mathfrak{d} \Rightarrow \mathfrak{e}$ is a tautology?

Problem 2.8 Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be statements, $\mathfrak{d}:=((\mathfrak{b} \Rightarrow \mathfrak{a}) \Rightarrow(\mathfrak{b} \wedge \mathfrak{c}))$, and $\mathfrak{e}:=(\mathfrak{b} \wedge(\mathfrak{a} \Rightarrow \mathfrak{c}))$. Show the logical equivalence of \mathfrak{d} and \mathfrak{e} by
(a) constructing the corresponding truth table;
(b) using the methods of propositional calculus.

Problem 2.9 Repeat Problem 2.8 for $\mathfrak{d}:=(\mathfrak{a} \wedge(\mathfrak{b} \Rightarrow \neg \mathfrak{a}))$ and $\mathfrak{e}:=(\neg(\mathfrak{a} \Rightarrow \mathfrak{b}))$.
Problem 2.10 Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} be statements. For each of the following statements find a logically equivalent statement that only involves \neg and \vee.

