
Chapter 2

Elements of Logic

2.1 Statements and Predicates

The building blocks of logical arguments are certain assertions called statements. A
statement is an assertion (sentence) that is either true or false.1 This means that
in order to establish that a statement is true it is sufficient to show that it is not
false. If a statement is true we say that its truth value is “True” (T). Similarly, a
false statement has truth value “False” (F). The assertion that “1 is less than 2.” is
a an example of a statement with truth value “T.” The assertion that “Every appel
is red.” is an example of a statement with truth value “F.”

There are also assertions that are not statements, e.g., “x is an integer” which
we may also express as “x ∈ Z.” This is an example of a predicate. A predicate
is an assertion involving one or more variables such that choosing a value for each
of the variables turns the assertion into a statement. For example, substituting 2
for x in the above predicate turns it into a true statement (2 ∈ Z), whereas setting
substituting 1

2 for x turns it into a false statement (12 ∈ Z). An example of a
predicate involving three variables is “x ∈ N, y ∈ Z, ε ∈ R+, x − y < ε.” 2 We
cannot decide if it is true unless we are provided with further information about
the variables x, y and ε.

In studying logic we often deal with statements whose content is not specified.
These are not to be confused with predicates. An unspecified statement a is dis-
tinguished from other types of assertions by the conditions that it does not involve
any variables and that it is either true or false; there is no other option for the
truth value of a statement. The same holds for a predicate, but we are not able to

1 Some books use the term “proposition” for what we call a “statement.”
2 Here we use the usual symbol “<” for “is less than.”
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determine the truth value of a predicate. We will also encounter predicates whose
variable(s) are unspecified statements.

Definition 2.1.1 Two statements a and b are said to be equal if they have the
same meaning, i.e., they can be used interchangeably in every argument. In this
case we write a = b. � 3

This notion of equality of statements is not quite essential, because “a = b” simply
means that a is another symbol for b. Therefore we can completely avoid using “=”
if we employ a unique notation for each statement appearing in a logical argument.
In contrast, we always need to use the defining symbol “:=” (or “=:”) whenever we
introduce a new statement.

Consider the following logical argument concerning a statement a.

b :=“If the statement that ‘a is false’ is false, then a is true.”

The reader undoubtedly agrees with the validity of this argument and that it is true
independently of whether a is itself true or false. For example, we may identify a
with the statement: “1 > 2.” Then

b=“If the statement that ‘1 > 2 is false’ is false, then “1 > 2” is true.”

Clearly, although a is false, b is true. As this example shows a valid logical argument,
namely b is always independent of the details of the circumstances it is applied to.
Every logical argument is indeed a statement and what is important is its truth
value. Indeed, we may describe Logic as a collection of rules that are used to deal
with various statements without having a bearing on the details of their content but
only their truth value. This is the main justification for the following definition.

Definition 2.1.2 Let a and b be statements. Then a is said to be logically equiv-
alent to b if a and b have the same truth value. In this case we write a ⇔ b. �

A trivial example of two logically equivalent statements is any statement a and the
statement “a is true.” We will encounter many nontrivial and useful examples of
logically equivalent statements in the following sections.

The notions of equality and logical equivalence for statements may be extended
to predicates.

Definition 2.1.3 Two predicates are said to be equal if they have the same mean-
ing, in particular they depend on the same variable(s). Two predicates are said to
be logically equivalent if they depend on the same variable(s) and for each value
of the variable(s) they yield logically equivalent statements. �

3 We use � to mark the end of a definition, proof, or a solution.
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2.2 Qualifiers

As we explained in the preceding section, fixing a particular value for the variable(s)
of a predicate yields a statement. This is not the only way of turning a predicate
into a statement. We can supplement the predicate with certain qualification of its
variables. For example consider the predicate “x is greater than 1.” We can turn
this into a statement by qualifying x to be an arbitrary integer: “For all integer
x, x is greater than 1.” This is a false statement. Next consider qualifying x in a
different way: “There is an integer x such that x is greater than 1.” Clearly, this is a
true statement. We will use the symbols “∀” to mean “for all” and “∃” for “there
exists one or many .” These are our basic qualifiers. Using these symbols
and the usual symbol “>” for “is greater than,” we can express the preceding two
statements as “∀x ∈ Z, x > 1” and “∃x ∈ Z, x > 1,” respectively.

A simple property of qualified variables is that they can be freely relabeled;
they are dummy variables. For example, “∀x ∈ Z, x > 1” and “∀y ∈ Z, y > 1”
are equal statements. Similarly, we have: (∃x ∈ Z, x > 1) = (∃y ∈ Z, y > 1).

In qualifying the variables of a predicate, one must qualify each variable
only once. For example “∃x ∈ R, ∃x ∈ Z, x = 1” is not an appropriate statement.
Similarly, one must not use a single symbol for two different qualified
variables. For example, let a1 := (∃x ∈ R, 1 < x) and a2 := (∃x ∈ R, x < 0) which
are true statements respectively obtained by qualifying the predicates p1(x) :=
(1 < x) and p2(x) := (x < 0). Now, because a1 and a2 are true, there is a real
number x such that 1 < x (according to a1) and x < 0 (according to a2). But,
would not this imply 1 < 0 ? The fallacy of this argument is in our illegitimate
use of x for two different purposes, first as a qualified variable in a1 and then as
a qualified variable in a2. To avoid this fallacy, we reserve x for the variable of p1
that appears in a1 and use y to denote the variable of p2 that appears in a2, i.e.,
write a2 := (∃y ∈ R, y < 0). In this way we are allowed to use x and y in other
arguments, e.g., to establish the statement: “∃x ∈ R, ∃y ∈ R, y < x,” that follows
from a1 and a2 and the inequalities: y < 0 < 1 < x.

Next, consider comparing the statement a := “for every real number x there
is an integer n such that x > n,” i.e., a := (∀x ∈ R, ∃n ∈ Z, x > n), with the
statement b := (∃n ∈ Z, ∀x ∈ R, x > n). It is not difficult to see that a is true
while b is false. Therefore, although b is obtained from a by changing the order
in which “∀x ∈ R” and “∃n ∈ Z” appear, a and b are different statements. This
example shows that changing the position of different terms appearing in
a statement may change the statement altogether .

In mathematical theories whenever one defines a new object, one must address
the natural question of its existence. For example one may define “m”to be “the
greatest natural number.” But such a natural number does not exist. Defining
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a mathematical object does not imply its existence. The latter must be
established independently.

Once one assures that a mathematical object exists, one must enquire into the
question of its uniqueness. For example, let p and q be a pair of rational numbers
satisfying 0 < p < q and p2 + q2 = 1. Such a pair exists because one can produce
the example: p = 3/5 and q = 4/5. But this pair is not the only one. Another
example is p = 5/13 and q = 12/13. This is a simple example of a mathematical
problem whose solution exists but is not unique.

The existence and uniqueness problems are of fundamental importance in all
areas of mathematics. The qualifier “ ∃! ” is often used to imply unique existence. It
stands for “there exists one and only one .” We can express the non-uniqueness
discussed in the preceding paragraph as the statement:

“(∃!p ∈ Q, ∃!q ∈ Q, 0 < p < q, p2 + q2 = 1) is false.”

The following is another example of a uniqueness statement.

∃!m ∈ Z, ∀n ∈ Z, m+ n = n.

2.3 Negation

To each statement we can associate another statement negating it.

Definition 2.3.1 Let a be a statement. Then the statement “a is false.”is called
the negation of a and denoted by ¬a. �

If a happens to be true, then ¬a is false and if a is false then ¬a is true. This shows
that the truth value of ¬a is the opposite of that of a. It is usually convenient
to construct a table giving various possibilities for the truth values of unspecified
statements. Such a table is called a truth table . A simple example is Table 2.1.
Its first column shows the two possible truth values of a. Its second column gives

a ¬a
T F
F T

Table 2.1: Truth table for ¬
the corresponding truth values for ¬a. We may view Table 2.1 as an alternative
definition of negation. We can use it to establish the following simple property of
negation.
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Proposition 2.3.1 Let a be a statement. Then ¬(¬a) is logically equivalent to a,
i.e., (¬(¬a))⇔ a.
Proof: It suffices to extend Table 2.1 to include the truth values of ¬(¬a). This
yields Table 2.2 showing that a and ¬(¬a) have the same truth value. Hence,
according to Definition 2.1.2, they are logically equivalent. �

a ¬a ¬(¬a)
T F T
F T F

Table 2.2: Truth table for ¬¬

We can extend the above definition of negation to predicates.

Definition 2.3.2 Let p be a predicate. Then the predicate “p is false.” is called
the negation of p and denoted by ¬p. �

Clearly, ¬p depends on the same variable(s) as p does. It is true (respectively false)
for those values of the variable(s) for which p is false (respectively true).

Next, we consider the problem of negating statements that involve qualifiers ∀,
∃, and ∃!.

Let a be the statement: “∀n ∈ Z, n = 1.” To negate this statement, we must
produce at least one integer that is different from 1. Expressing this in mathematical
symbols we have: ¬a = (∃n ∈ Z, n �= 1).4 Next, consider the statement b := (∃r ∈
Q, r2 + r−2 = 1). To negate b we must show that for every rational number r
the equality r2 + r−2 = 1 is false. Therefore, ¬b = (∀r ∈ Q, r2 + r−2 �= 1). A
straightforward application of this argument establishes the following theorem.

Theorem 2.3.1 Let p(x) be a predicate whose variables (collectively denoted by x)
belong to a set A, and c and d be the statements:

c := (∀x ∈ A, p(x)), d := (∃x ∈ A, p(x)). (2.1)

Then
¬c = (∃x ∈ A, ¬p(x)), ¬d = (∀x ∈ A, ¬p(x)). (2.2)

Proof: Equations (2.2) follow from the same argument that we used to deal with
the examples given in the preceding paragraph. �

4 The reader should be able to justify our choice of using “=” in place of “:=” in the preceding
relation and appreciate the fact that we could use another symbol say “m” in the expression for
¬a instead of “n.”
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Exercise 2.3.1 Find ¬a for a := (∀x ∈ R, ∃n ∈ Z, x < n).
Solution: First we express a in one of the forms given in (2.1). We can do this by
introducing p(x) := (∃n ∈ Z, x < n), so that a = (∀x ∈ R, p(x)). Then in view of
(2.2), we have

¬a = (∃x ∈ R,¬p(x)). (2.3)

Now, we apply (2.2) once again for p(x) to find ¬p(x) = (∀n ∈ Z, x ≥ n). Combining
this relation with (2.3), we obtain

¬a = (∃x ∈ R, ∀n ∈ Z, x ≥ n). �

This completes our discussion of negating statements involving ∀ and ∃. Next, we
consider negating an statement involving ∃!.

Exercise 2.3.2 Find ¬u for u := (∃!n ∈ Z+, n2 < 2).
Solution: There are two ways in which we can negate u. Either we must show that
there is no positive integer n satisfying n2 < 2 or produce at least two (different)
positive integers n1 and n2 such that n2

1 < 2 and n2
2 < 2. The first strategy indeed

negates e := (∃n ∈ Z+, n2 < 2) which amounts to ¬e = (∀n ∈ Z+, n2 ≥ 2). So let us
assume that e is true (as it is), and pursue the second strategy which is to actually
negate the uniqueness feature of u. In mathematical symbols we can express it in
the form:

f := (∃n1 ∈ Z+, ∃n2 ∈ Z+, n1 �= n2, n2
1 < 2, n2

2 < 2). (2.4)

Strictly speaking, ¬u asserts that either ¬e or f is true. This is an example of a
compound statement. �

2.4 Compound Statements

A typical mathematical argument involves a number of basic statements that are
combined to form more complicated statements. These are called compound state-
ments. We have already encountered an example of a compound statement, namely
a ⇔ b, that combines any two statements a and b into their logical equivalence.
As we will see in this section, the logical equivalence may be expressed in terms
of a pair of more elementary compound statements. There are three elementary
compound statements.

Definition 2.4.1 Let a and b be statements. Then

(i) “Both a and b are true.” is called a conjunction and denoted by a ∧ b;
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(ii) “Either a or b (or both) is true.” is called a disjunction and denoted by
a ∨ b;

(iii) “If a is true, then so is b.” is called an implication and denoted by a ⇒
b. �

We may view ∧, ∨, and ⇒ as operations that apply to pairs of statements
and yield the above compound statements. These together with the negation, ¬ ,
provide the means for composing complicated statements out of the simpler ones.
Indeed we use them whenever we conduct a logical argument. We have already
encountered in Exercise 2.3.2 the need for a disjunction. We can express its solution
as ¬u = (¬e ∨ f). We will encounter many examples of conjunctions, disjunctions,
and implications in this book.

The truth value of a conjunction and a disjunction is evident from their defini-
tion. The only way in which a ∧ b is true is that both a and b are true,
and the only way in which a ∨ b is false is that both a and b are false.

The constituent statements a and b of an implication a ⇒ b are respectively
called the hypothesis and the conclusion of the implication. To determine the
truth value of an implication, it is convenient to ask when it is false. To falsify
a⇒ b, we must assure that its hypothesis a is true but its conclusion b is false. It is
tempting to think of an implication as being inconclusive whenever its hypothesis is
false. But being inconclusive is not an option for a statement. Because in the case
that the hypothesis is false we cannot infer that the implication is false, it must be
true. For example, let a := “Mina has read this book.”, b := “Mina is able to solve
all the exercise problems in this book.”, and c := (a⇒ b) = “If Mina has read this
book, then she is able to solve all its exercises problems.” The only way of refuting
c is to make sure that Mina has read the book but she cannot solve at least one
of its exercise problems. Therefore, an implication (a ⇒ b) is true unless its
hypothesis (a) is true and its conclusion (b) is false.

Table 2.3 is the truth table for a∧b, a∨b, and a⇒ b. It has four rows, because
there are a total of four possibilities for the truth values of a and b.

a b a ∧ b a ∨ b a⇒ b

T T T T T

T F F T F

F T F T T

F F F F T

Table 2.3: Truth table for ∧, ∨, and ⇒
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A basic property of conjunctions and disjunctions that follows from their defi-
nition is that up to logical equivalence the order in which we use them to combine
two statements is irrelevant.

Theorem 2.4.1 Let a and b be statements. Then

(a ∧ b)⇔ (b ∧ a), (a ∨ b)⇔ (b ∨ a). (2.5)

Proof: According to Table 2.3, the truth values of a∧ b and a∨ b do not change if
we swap a and b. Therefore, a ∧ b and b ∧ a (respectively a ∨ b and b ∨ a) have the
same truth value, and in view of Definition 2.1.2 they are logically equivalent. �

We will refer to this property of ∧ and ∨ by saying that they are commutative
operations.

Exercise 2.4.1 Construct the truth table for ¬(a ∧ b), ¬(a ∨ b), and ¬(a⇒ b).
Solution: The negation of a statement is true whenever the statement is false.
Therefore, the truth table for ¬(a ∧ b), ¬(a ∨ b), and ¬(a ⇒ b) is obtained by
exchanging F and T in the last three columns of Table 2.3. The result is Table 2.4. �

a b ¬(a ∧ b) ¬(a ∨ b) ¬(a⇒ b)

T T F F F

T F T F T

F T T F F

F F T T F

Table 2.4: Truth table for the negation of ∧, ∨, and ⇒

Next, we derive some basic properties of logical equivalence.

Proposition 2.4.1 Let a, b and c be statements. Then the following hold.

(a) (a = b)⇒ (a⇔ b).

(b) (a⇔ b)⇔ (b⇔ a).

(c) ((a⇔ b) ∧ (b⇔ c))⇒ (a⇔ c)).
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a b a⇔ b b⇔ a

T T T T

T F F F

F T F F

F F T T

Table 2.5: Truth table establishing (a⇔ b)⇔ (b⇔ a).

a b c a⇔ b b⇔ c a⇔ c (a⇔ b) ∧ (b⇔ c) d

T T T T T T T T

T T F T F F F T

T F T F F T F T

T F F F T F F T

F T T F T F F T

F T F F F T F T

F F T T F F F T

F F F T T T T T

Table 2.6: Truth table showing that d := (((a ⇔ b) ∧ (b ⇔ c)) ⇒ (a ⇔ c)) is
true.

Proof: According to the definition of logical equivalence (Definition 2.1.2), (a)
holds because equal statements have equal truth values. To establish (b) and (c)
we construct the relevant truth tables namely Tables 2.5 and 2.6. According to
Table 2.5, a⇔ b and b⇔ a have the same truth value. This proves (b). Similarly
Table (2.6) shows that (c) is also true. �

Part (b) of this proposition indicates that ⇔ is a commutative operation. This
justifies the identification of the statements “a is logically equivalent to b” and “a
and b are logically equivalent.”

Proposition 2.4.2 Let a and b be statements. If a is logically equivalent to b, then
¬a is logically equivalent to ¬b, i.e., (a⇔ b)⇒ (¬a⇔ ¬b).5
Proof: If a ⇔ b, then a and b have the same truth value. But then ¬a has the

5 Convention: In compound statements involving ¬, this symbol is assumed to affect only
the first statement to its right. Parenthesis are used to negate compound statements, e.g., ¬(a ⇒
¬b). We have adopted this convention to reduce the number of parenthesis appearing in more
complicated compound statements. For example it allow to write (¬a) ∧ (¬b) as ¬a ∧ ¬b.
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opposite truth value to b. Hence ¬a has the same truth value as ¬b. In view of
Definition 2.1.2, this implies ¬a⇔ ¬b. �

Next, we show that unlike ∧, ∨, and ⇔, the operation ⇒ is not commutative.
In general, changing the roles of the hypothesis and the conclusion of
an implication changes the implication itself. This is actually quite evident.
For example, consider the implication: “If Mina has read this book, then she can
solve all its exercise problems.” Changing the hypothesis and the conclusion of this
implication yields: “If Mina can solve all the exercise problems in this book, then
she has read it.” These two statements are clearly different. It is quite possible
that the first is true while the second is not.

Proposition 2.4.3 Let a and b be arbitrary statements. Then a ⇒ b and b ⇒ a
are not logically equivalent.
Proof: It is sufficient to show that a ⇒ b and b ⇒ a do not have the same truth
value. But this is evident from Table 2.7. Comparing the third and forth columns
of this table, we see that indeed a⇒ b and b⇒ a have different truth values. �

As it is clear from Table 2.3, the truth value of an implication must not be
confused with the truth value of its conclusion. It is possible for an implication to
be true even if its conclusion is false. This happens precisely in the case that the
hypothesis is also false. In the above-mentioned example, we recall that if Mina has
not read the book and she cannot solve all the exercise problems, we cannot say
that the implication “If Mina has read this book, then she can solve all its exercise
problems” is false. Hence it is true.

If the implication a ⇒ b is true, one says that a is a sufficient condition for
b and b is a necessary condition for a. It is also customary to use the phrase “a
if and only if b” or its abbreviation: “a iff b” for the logical equivalence a⇔ b.
In this case one says that a is a necessary and sufficient condition for b. The
following characterization of logical equivalence justifies this terminology.

Theorem 2.4.2 Let a and b be statements. Then a ⇔ b is logically equivalent to
(a⇒ b) ∧ (b⇒ a).
Proof: As shown in Table 2.7, a⇔ b has the same truth value as (a⇒ b)∧(b⇒ a).
Hence they are logically equivalent. �

This theorem shows that in order to prove the logical equivalence of two
statements a and b, one must establish both the implication a ⇒ b and
its converse b⇒ a.

Corollary 2.4.1 Let a and b be statements. Then a ⇔ b is logically equivalent to
¬a⇔ ¬b, i.e., (a⇔ b)⇔ (¬a⇔ ¬b).
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a b a⇔ b a⇒ b b⇒ a (a⇒ b) ∧ (b⇒ a)

T T T T T T

T F F F T F

F T F T F F

F F T T T T

Table 2.7: Truth table establishing (a⇔ b)⇔ ((a⇒ b) ∧ (b⇒ a)).

Proof: To prove this statement we prove c := ((a ⇔ b) ⇒ (¬a ⇔ ¬b)) and
d := ((¬a ⇔ ¬b) ⇒ (a ⇔ b)). We have shown c in Proposition 2.4.2. To show d
we apply c for the case that a and b are respectively replaced with their negations.
This together with Proposition 2.3.1 yield d. �

Logical equivalence plays a fundamental role in logical arguments. If we replace
the constituent statements a1, a2, a3, · · · of a compound statement b by the state-
ments a′1, a′2, a′3, · · · that are respectively logically equivalent to a1, a2, a3, · · · , we
obtain a new compound statement b′ which is logically equivalent to b. In other
words, we can use logically equivalent statements interchangeably in logical argu-
ments. For example in order to establish the validity of an implication a1 ⇒ a2 we
may as well find statements a′1 and a′2 which are respectively logically equivalent
to a1 and a2 and establish the implication a′1 ⇒ a′2. We leave the proof of this
statement for the reader (Problem 2.6).

Often the definition of a mathematical object does not provide a useful method
of identifying concrete examples of such an object. This motivates finding alterna-
tive conditions that are both necessary and sufficient for the validity of the defining
conditions of the object in question. The statement establishing the logical equiv-
alence of these two sets of conditions is called a characterization theorem . A
typical example is Theorem 2.4.2 that provides a necessary and sufficient condition
for the logical equivalence of two statements. Often characterization theorems as-
sert the logical equivalence of several statements say a1, a2, · · · , an for some n ∈ Z+.
To prove such a theorem one must establish the logical equivalence of ai and aj for
all i and j between 1 and n. Given that ⇔ is commutative and every statement is
logically equivalent to itself, this amounts to proving 1

2n(n− 1) logical equivalences
or, in view of Theorem 2.4.2, n(n − 1) implications. It turns out, however, that it
is sufficient (and necessary) to prove the following complete cycle of n implications.

(a1 ⇒ a2) ∧ (a2 ⇒ a3) ∧ · · · ∧ (an−1 ⇒ an) ∧ (an ⇒ a1). (2.6)

Here we prove this statement for n = 3.
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Theorem 2.4.3 Let a, b, c be statements and

d := ((a⇔ b) ∧ (a⇔ c)) ∧ (b⇔ c)), e := ((a⇒ b) ∧ (b⇒ c) ∧ (c⇒ a))

Then d and e are logically equivalent.
Proof: We use Tables 2.3 and 2.7 to construct the relevant truth table for the
problem (Table 2.8) and check that d and e have the same truth value. �

a b c a⇒ b b⇒ c c⇒ a a⇔ b a⇔ c b⇔ c d e

T T T T T T T T T T T

T T F T F T T F F F F

T F T F T T F T F F F

T F F F T T F F T F F

F T T T T F F F T F F

F T F T F T F T F F F

F F T T T F T F F F F

F F F T T T T T T T T

Table 2.8: Truth table establishing the logical equivalence of d := ((a⇔
b) ∧ (a⇔ c)) ∧ (b⇔ c)) and e := ((a⇒ b) ∧ (b⇒ c) ∧ (c⇒ a)).

2.5 Contradictions and Tautologies

Consider the following two compound statements that depend on an unspecified
statement b.

a := (b ∧ ¬b), c := (b ∨ ¬b).
Clearly, a is false and c is true regardless of whether b is true or false. a and b are
examples of a contradiction and a tautology, respectively.

Definition 2.5.1 A contradiction is a compound statement which is false regard-
less of the truth value of its constituents statements. Similarly, a tautology is a
compound statement which is true regardless of the truth value of its constituents
statements. �

Exercise 2.5.1 Let a be a statement and b := (a⇒ ¬a). Is b a contradiction?
Solution: b is an implication. If its hypothesis (a) is false, b is true. This shows
that b is not a contradiction. �

A simple consequence of Definition 2.5.1 is the following uniqueness theorem.
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Theorem 2.5.1 Let c and c′ be contradictions and t and t′ be tautologies. Then

c⇔ c′, t⇔ t′, c⇔ ¬t. (2.7)

Proof: These follow directly from Definition 2.5.1 and Theorem 2.4.2. Because
c and c′ are both false, they have the same truth value. So they are logically
equivalent. The same argument applies to t and t′, because both of them have
truth value “T.” Finally ¬t has truth value “F” so it is a contradiction. As a result,
we may identify ¬t with c′ in the first relation in (2.7). This yields c⇔ ¬t. �

This theorem indicates that up to logical equivalence there are a unique contradic-
tion and a unique tautology, and that the former is the negation of the latter.

Exercise 2.5.2 Let a, c, and t be respectively an arbitrary statement, a contradic-
tion, and a tautology. Show that a⇒ t and c⇒ a are tautologies.
Solution: Because t is true, according to Table 2.3, a ⇒ t is true irrespective of
whether a is true or false. Therefore, a ⇒ t is a tautology. Similarly, c ⇒ a is a
tautology, because c is false and according to Table 2.3 this suffices to hold that
c⇒ a is true regardless of the truth value of a. �

A strange outcome of this exercise is that contradictions imply tautologies! The
reader must not view all tautologies as unimportant or useless. For example, con-
sider the statement (c) of Proposition 2.4.1, i.e.,

d := (((a⇔ b) ∧ (b⇔ c))⇒ (a⇔ c)).

Since we have proven that d is true regardless of the nature of its constituent
statements, a, b and c, by Definition 2.5.1, d is a tautology! Indeed, a large number
of theorems in mathematics concern establishing that certain compound statements
are tautologies. The following theorem is an example. It provides the basis for one
of the most important methods of establishing the validity of an implication, namely
the method of proof by deduction (Section 3.4).

Theorem 2.5.2 (Two-step deduction) Let a, b and c be statements. Then the
statement d := ((a ⇒ c) ∧ (c ⇒ b)) implies a ⇒ b, i.e., e := (d ⇒ (a ⇒ b)) is a
tautology.
Proof: We determine the truth value of e by considering all possible truth values
of a, b and c. Constructing the relevant truth table (Table 2.9) we find that indeed
e is always true; it is a tautology. �

Exercise 2.5.3 Let e, f and g be statements. Show that

h := ( ((e ∧ f) ∧ (e⇒ g)) ⇒ (f ∧ g) )
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a b c a⇒ c c⇒ b a⇒ b d e

T T T T T T T T

T T F F T T F T

T F T T F F F T

T F F F T F F T

F T T T T T T T

F T F T T T T T

F F T T F T F T

F F F T T T T T

Table 2.9: Truth table establishing that d := ((a⇒ c)∧ (c⇒ b)) implies
a⇒ b. Here e := (d⇒ (a⇒ b)).

is a tautology.
Solution: Again we can establish h by constructing its truth table (Problem 2.3).
Here we give an alternative proof that is based on our knowledge of implications
and conjunctions. Our aim is to show that h cannot be false. First, we recall that
an implication is false only if its hypothesis is true and its conclusion is false, and
a conjunction is true only if its constituent statements are both true. We start our
argument by expressing h as the implication: h = (a⇒ b) where

a := ((e ∧ f) ∧ (e⇒ g)),

b := (f ∧ g).

h can be false only if a is true and b is false. To ensure that a is true,

(1) e ∧ f must be true, which implies e and f are both true, and

(2) e⇒ g must be true.

Combining (1) and (2), we see that because both e and e ⇒ g are true, g must
be true. But according to (1), f is also true. This shows that there is no way we
can ensure that b is false. Therefore, it is impossible for h to be false; it is true
regardless of the truth values of its constituents, i.e., it is a tautology. �

Our solution of Exercise 2.5.3 involves two parts. First we actually consider the
possibility that the statement we wish to prove is false. We then show that this
never happens. This approach is called the method of proof by contradiction that
we will examine more thoroughly in Section 3.5. We use a similar approach to solve
the following exercise problem.
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Exercise 2.5.4 Let e, f and g be statements. Show that

h := ( (e⇒ f) ⇒ ((e ∧ g)⇒ (f ∧ g)) )

is a tautology.
Solution: We can view h as an implication with a := (e⇒ f) as its hypothesis and
b := ((e ∧ g) ⇒ (f ∧ g)) as its conclusion. The only way in which h can be false is
that a is true and b is false. The latter requires e ∧ g to be true and f ∧ g to be
false. The first of these implies that both e and g must be true, but then the second
can be achieved only if f is false. Next, we consider a which we also view as an
implication. Because its conclusion (f) is false and a is true, its hypothesis e must
be false as well. But we already established that e is true. This argument shows
that h cannot be false. Therefore, it is always true regardless of the truth values of
e, f and g; it is a tautology. �

2.6 Propositional Calculus

The compound statements we have so far introduced are actually not completely
independent. We have already related logical equivalence to a conjunction of a pair
of implications (Theorem 2.4.2). In this section we reveal some basic relationships
between the elementary compound statements. We begin linking conjunctions and
disjunctions.

Theorem 2.6.1 (De Morgan’s laws) Let a and b be statements, then

(a) ¬(a ∧ b) and ¬a ∨ ¬b are logically equivalent;

(b) ¬(a ∨ b) and ¬a ∧ ¬b are logically equivalent.

Proof: To establish (a), we construct the relevant truth table (Table 2.10), and
realize that ¬(a ∧ b) and ¬a ∨ ¬b have identical truth values. To prove (b) we can

a b ¬a ¬b a ∧ b ¬(a ∧ b) ¬a ∨ ¬b
T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

Table 2.10: Truth table establishing (¬(a ∧ b))⇔ (¬b ∨ ¬a)

construct the corresponding truth table (Problem 2.3) or reduce its proof to that of
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(a) as we explain next. In view of Proposition 2.3.1, which asserts (¬(¬e))⇔ e for
any statement e, and part (a) above, we have for any pair of statements c and d,

(c ∧ d)⇔ (¬(¬c ∨ ¬d)). (2.8)

Now, let c := ¬a and d := ¬b, so that a ⇔ ¬c and b ⇔ ¬d. Substituting these
relations in (2.8), we have

(¬a ∧ ¬b)⇔ (¬(a ∨ b)),

which in view of the commutativity of ⇔ (Theorem 2.4.1) establishes (b). �

A simple consequence of the preceding theorem is that the operations ¬,∧, and
∨ are not independent; up to logical equivalence we can use ¬ and ∧ to
express ∨ and use ¬ and ∨ to express ∧:

(a ∨ b)⇔ (¬(¬a ∧ ¬b)), (a ∧ b)⇔ (¬(¬a ∨ ¬b)). (2.9)

Next, we relate ⇒ to ∨ and consequently ∧.

Theorem 2.6.2 Let a and b be statements. Then a ⇒ b is logically equivalent to
¬a ∧ b, i.e.,

(a⇒ b)⇔ (¬a ∨ b). (2.10)

Proof: This follows from Table 2.11. �

a b ¬a ¬a ∨ b a⇒ b

T T F T T

T F F F F

F T T T T

F F T T T

Table 2.11: Truth table establishing (a⇒ b)⇔ (¬a ∨ b)

Notation: Let c1, c2, · · · , cn be statements. Then

c1 ∧ c2 ∧ · · · ∧ cn := c1 ∧ (c2 ∧ (c3 ∧ · · · (cn−1 ∧ cn) · · · )), (2.11)

c1 ∨ c2 ∨ · · · ∨ cn := c1 ∨ (c2 ∨ (c3 ∨ · · · (cn−1 ∨ cn) · · · )), (2.12)

c1 ⇒ c2 ⇒ · · · ⇒ cn := ((c1 ⇒ c2) ∧ (c2 ⇒ c3) ∧ · · · ∧ (cn−1 ⇒ cn)), (2.13)

c1 ⇔ c2 ⇔ · · · ⇔ cn := ((c1 ⇔ c2) ∧ (c2 ⇔ c3) ∧ · · · ∧ (cn−1 ⇔ cn)). (2.14)



2.6 Propositional Calculus 27

Corollary 2.6.1 Let a and b be statements. Then a ⇒ b is logically equivalent to
¬b⇒ ¬a, i.e.,

(a⇒ b)⇔ (¬b⇒ ¬a). (2.15)

Proof: Applying (2.10) to ¬b ⇒ ¬a, using the commutativity of ∨, and then
applying (2.10) again, we have

(¬b⇒ ¬a)⇔ (¬(¬b) ∨ ¬a)⇔ (b ∨ ¬a)⇔ (¬a ∨ b)⇔ (a⇒ b). (2.16)

This relation together with part (b) of Proposition 2.4.1 and the commutativity of
⇔ yield (2.15). �

The right-hand side of the logical equivalence (2.15) is called the contrapositive
of its left-hand side. In Section 3.4, we will use this logical equivalence to outline a
method of proving implications which is called the contrapositive proof. It relies on
the simple observation that in order to prove an implication it is sufficient to prove
its contrapositive.

Theorem 2.6.3 Let a, b and c be statements. Then

(a ∧ (b ∧ c)) ⇔ ((a ∧ b) ∧ c), (2.17)

(a ∨ (b ∨ c)) ⇔ ((a ∨ b) ∨ c), (2.18)

(a ∧ (b ∨ c)) ⇔ ((a ∧ b) ∨ (a ∧ c)), (2.19)

(a ∨ (b ∧ c)) ⇔ ((a ∨ b) ∧ (a ∨ c)). (2.20)

Proof: The above logical equivalences can be established most easily by construct-
ing the corresponding truth tables. We do this for (2.19) leaving the others for the
reader. The truth table proving (2.19) is Table 2.12. It shows that a ∧ (b ∨ c) and
(a∧ b)∨ (a∧ c) have the same truth value. Hence they are logically equivalent. �

The logical equivalences (2.17) and (2.18) are usually referred to as the associa-
tivity of the operations ∧ and ∨. Similarly (2.19) and (2.20) are the statements of
the distribution laws of ∧ over ∨ and ∨ over ∧, respectively. Note that because
∧ and ∨ are commutative operations, the following distribution laws hold as well.

((a ∨ b) ∧ c) ⇔ ((a ∧ c) ∨ (b ∧ c)), (2.21)

((a ∧ b) ∨ c) ⇔ ((a ∨ c) ∧ (b ∨ c)). (2.22)

It is not difficult to show that ⇔ is also an associative operation (Problem 2.4).

The operations ∨ and ∧ share many (but not all) the properties of addition
and multiplication of numbers. Another of their properties that is analogous to
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a b c a ∧ b a ∧ c b ∨ c a ∧ (b ∨ c) (a ∧ b) ∨ (a ∧ c)

T T T T T T T T

T T F T F T T T

T F T F T T T T

T F F F F F F F

F T T F F T F F

F T F F F T F F

F F T F F T F F

F F F F F F F F

Table 2.12: Truth table establishing (a ∧ (b ∨ c))⇔ ((a ∧ b) ∨ (a ∧ c)).

that of addition and multiplication of numbers is that they have identity (neutral)
elements. As the following proposition shows, every contradiction is an identity
element of ∨ and every tautology is an identity element of ∧.

Proposition 2.6.1 Let a, c, and t be respectively a statement, a contradiction, and
a tautology. Then

(a ∨ c)⇔ a, (a ∧ t)⇔ a. (2.23)

Proof: According to Table 2.3, because the truth value of c and t are respectively
“F” and “T,” a∨ c and a∧ t have the same truth value as a. This implies (2.23). �

The following proposition reveals a property of ∨ and ∧ that is not shared with the
usual addition and multiplication of numbers.

Proposition 2.6.2 Let a be a statement. Then

(a ∨ a)⇔ a, (a ∧ a)⇔ a. (2.24)

Proof: This follows from Table 2.3. �

Having obtained the basic properties of the operations ¬,∧,∨,⇒ and ⇔, we
can perform calculations involving compound statements. This is called Proposi-
tional Calculus, mainly pioneered by Gottlob Frege (1848-1925), Alfred White-
head (1861-1947), Bertrand Russell (1872-1970), and David Hilbert (1862-1943).
We have already employed it in the proof of part (b) of Theorem 2.6.1 and proof
of Corollary 2.6.1. The following are other simple applications of Propositional
Calculus.
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Exercise 2.6.1 Let a and b be statements. Show that

¬(a⇒ b)⇔ (a ∧ ¬b). (2.25)

Solution: We preform the following calculation.

¬(a⇒ b) ⇔ (¬(¬a ∨ b)) (by Theorem 2.6.2)
⇔ (¬(¬a) ∧ ¬b) (by Theorem 2.6.1)
⇔ (a ∧ ¬b) (by Proposion 2.3.1). �

Exercise 2.6.2 Let a, b and c be statements. Show the logical equivalence of
(a ∧ b)⇒ c and a⇒ (b⇒ c).
Solution: We preform the following calculation.

((a ∧ b)⇒ c) ⇔ (¬(a ∧ b) ∨ c) (by Theorem 2.6.2)
⇔ ((¬a ∨ ¬b) ∨ c) (by Theorem 2.6.1)
⇔ (¬a ∨ (¬b ∨ c)) (by Theorem 2.6.3)
⇔ (¬a ∨ (b⇒ c)) (by Theorem 2.6.2)
⇔ (a⇒ (b⇒ c)) (by Theorem 2.6.2). �

Exercise 2.6.3 Express ⇔ in terms of ¬ and ∨.
Solution: Let a and b be statements. Then, we have

(a⇔ b) ⇔ ((a⇒ b) ∧ (b⇒ a))

⇔ (¬a ∨ b) ∧ (¬b ∨ a)

⇔ ¬(¬(¬a ∨ b) ∨ ¬(¬b ∨ a)). �

Next, we give an alternative solution of Exercise 2.5.3 that uses the methods of
Propositional Calculus. First we recall the statement of this Exercise.

Exercise 2.5.3: Let e, f and g be statements. Show that

h := ( ((e ∧ f) ∧ (e⇒ g)) ⇒ (f ∧ g) )

is a tautology.
Solution: We begin our analysis by using the identity (Theorem 2.6.1)

(e⇒ g)⇔ (¬e ∨ g) (2.26)
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and the distribution law of ∧ over ∨ (Theorem 2.6.2) to establish

((e ∧ f) ∧ (e⇒ g))⇔ ((e ∧ f) ∧ (¬e ∨ g))⇔ ((e ∧ f) ∧ ¬e) ∨ ((e ∧ f) ∧ g)). (2.27)

In view of the associativity and commutativity of ∧, we have

((e ∧ f) ∧ ¬e) ⇔ (f ∧ (e ∧ ¬e)), (2.28)

((e ∧ f) ∧ g)) ⇔ (e ∧ (f ∧ g)). (2.29)

Because e ∧ ¬e is a contradiction, according to (2.28), so is ((e ∧ f) ∧ ¬e). This
together with (2.27) and (2.29) imply

((e ∧ f) ∧ (e⇒ g))⇔ ((e ∧ f) ∧ g))⇔ (e ∧ (f ∧ g)). (2.30)

Next, consider

(e ∧ (f ∧ g))⇒ (f ∧ g). (2.31)

In order for this implication to be false its hypothesis e∧ (f∧ g) must be true whilst
its conclusion f ∧ g must be false. But this is not possible, because if f ∧ g is false
then so is e∧ (f∧g). This shows that (2.31) is always true; it is a tautology. In view
of (2.30), (2.31) is logically equivalent to h. Therefore, h is also a tautology. �

Comments and Suggestions for Further Reading

In this chapter we outlined the basic ingredients upon which we will base our logical
reasoning in the rest of this book. In particular, we will use our knowledge of
propositional calculus in Chapter 3 to clarify the logical underpinning of various
proof methods that we will employ in our study of sets, relations, functions, etc. in
Chapters 4-8.

Similar accounts of elementary logic can be found in almost every introductory
textbook on abstract mathematics. Some examples are

1. R. Garnier and J. Taylor, 100% Mathematical Proof, John Wiley & Sons,
Chichester, West Sussex, 1996.

2. G. Chartrand, A. D. Polimeni, and P. Zhang, Mathematical Proofs, Addison
Wesley, Boston, 2008.

3. C. Schumacher, Chapter Zero, Addison Wesley, New York, 2001.

More advanced treatment of the subject are given in
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4. S. N. Burris, Logic for Mathematics and Computer Science, Prentice Hall,
Upper Saddle River, New Jersey, 1998.

5. S. Hedman, A First Course in Logic, Oxford University Press, Oxford, 2004.

The methods of Logic have important applications in computer science and
electrical engineering. For a readable discussion of some of these applications, see

6. A. Nerode and R. A. Shore, Logic for Applications, Springer-Verlag, New
York, 1993.

Problems

Problem 2.1 Specify the truth value of the following statements and determine
their negation.

a1 := (∀x ∈ N, ∃y ∈ N, x < y)

a2 := (∃y ∈ N, ∀x ∈ N, x < y)

a3 := (∃x ∈ N, ∀y ∈ N, x < y)

a4 := (∀y ∈ N, ∃x ∈ N, x < y)

a5 := (∃x ∈ N, ∃y ∈ N, x < y)

a6 := (∀x ∈ N, ∀y ∈ N, x < y)

Problem 2.2 Let p(x) be a predicate depending on a variable x that takes values in
a set A. Express the negation of the statement “∃!x ∈ A, p(x)” using mathematical
symbols.

Problem 2.3 Obtain a solution of Exercise 2.5.3 and a proof of part (b) of Theo-
rem 2.6.1 by constructing the relevant truth tables.

Problem 2.4 Let a, b, c be statements. Prove that (a⇔ b)⇔ c is logically equiv-
alent to a⇔ (b⇔ c), i.e., ⇔ is an associative operation.

Problem 2.5 Let a, b, c be statements. Determine if the following compound state-
ments are tautologies.
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d1 := (a⇔ (b ∧ c))⇔ ((a⇔ b) ∧ (a⇔ c))

d2 := (a⇔ (b ∨ c))⇔ ((a⇔ b) ∨ (a⇔ c))

d3 := (a⇔ (b⇒ c))⇔ ((a⇔ b)⇒ (a⇔ c))

Problem 2.6 Let a, b, a′, b′ be statements such that a ⇔ a′ and b ⇔ b′. Prove
that the following compound statements are tautologies.

c1 := ((a ∧ b)⇔ (a′ ∧ b′)).

c2 := ((a ∨ b)⇔ (a′ ∨ b′)).

c3 := ((a⇒ b)⇔ (a′ ⇒ b′)).

Problem 2.7 Let a, b, c be statements, d := (¬a ⇒ (b ⇒ c)), and e := (¬(a ⇒
b)⇒ c). Determine whether d⇒ e is a tautology?

Problem 2.8 Let a, b, c be statements, d := ((b⇒ a)⇒ (b∧c)), and e := (b∧(a⇒
c)). Show the logical equivalence of d and e by

(a) constructing the corresponding truth table;

(b) using the methods of propositional calculus.

Problem 2.9 Repeat Problem 2.8 for d := (a ∧ (b⇒ ¬a)) and e := (¬(a⇒ b)).

Problem 2.10 Let a, b and c be statements. For each of the following statements
find a logically equivalent statement that only involves ¬ and ∨.

d1 := (a⇒ ¬a)
d2 := (a⇒ (b⇒ c))

d3 := ((a⇒ b) ∧ (b⇒ c))

d4 := (((a⇒ b) ∧ (b⇒ c))⇒ (a⇒ c))

d5 := ((a⇔ b)⇒ c)
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Problem 2.11 Let a1, a2 and a3 be statements. Prove the logical equivalence of
the following compound statements.

b1 := (a1 ∧ a2 ∧ a3)

b2 := (a1 ∧ (a1 ⇒ a2 ⇒ a3))

b3 := (a1 ∧ (∀m ∈ {1, 2}, (am ⇒ am+1)))

Here “∀m ∈ {1, 2}” means “for both values 1 and 2 of m.”


