Math 103: Quiz \# 4

Spring 2007

You have 45 minutes.

1. Let A, B, C be sets, $D \subseteq B, S$ be a relation that relates elements of A to those of B, and T be a relation that relates the elements of B to those of C. Give the definition of
1.a) the identity relation associated with A; (5 points)
1.b) the range of S; (5 points)
1.c) the inverse image of D under S; (5 points)
1.d) the composite relation $T \circ S$; (5 points)
1.e) the inverse relation to S. (5 points)
2. Let $R:=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x<y\right\}$ and $I:=(0,2):=\{r \in \mathbb{R} \mid 0<r<2\}$.
2.a) Find the domain of R; (10 points)
2.b) Prove that $\operatorname{Ran}(R)=(1, \infty):=\{r \in \mathbb{R} \mid r>1\} ; \quad$ (10 points)
2.c) Find the inverse image of I under R. (10 points)
3. Let A and B be sets, $D \subseteq B$, and $S \subseteq A \times B$.
3.a) Prove that if $\operatorname{Ran}(S) \subseteq D$, then $S^{-1}(\operatorname{Ran}(S))=\operatorname{Dom}(S)$. (10 points)
3.b) Prove that $\operatorname{Dom}\left(S^{-1} \circ S\right)=\operatorname{Dom}(S)$, where S^{-1} denotes the inverse relation to S. (15 points)
4. Let $R:=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\sqrt{y+1}\right\}$ and $S:=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{\sqrt{|y|}}\right.\right\}$. Find the domain of $S \circ R$ and give an argument to support your response. (20 points)
