Name, Last Name: Student No: Grade:

Math 103: Quiz # 4 Spring 2007

You have 45 minutes.

1. Let A, B, C be sets, $D \subseteq B, S$ be a relation that relates elements of A to those of B, and T be a relation that relates the elements of B to those of C. Give the definition of

1.a) the identity relation associated with A; (5 points)

1.b) the range of S; (5 points)

1.c) the inverse image of D under S; (5 points)

1.d) the composite relation $T \circ S$; (5 points)

1.e) the inverse relation to S. (5 points)

- 2. Let $R := \{(x, y) \in \mathbb{R}^2 \mid 1 < x < y \}$ and $I := (0, 2) := \{r \in \mathbb{R} \mid 0 < r < 2 \}.$
- 2.a) Find the domain of R; (10 points)

2.b) Prove that $\operatorname{Ran}(R) = (1, \infty) := \{r \in \mathbb{R} \mid r > 1\};$ (10 points)

2.c) Find the inverse image of I under R. (10 points)

- 3. Let A and B be sets, $D \subseteq B$, and $S \subseteq A \times B$.
- 3.a) Prove that if $\operatorname{Ran}(S) \subseteq D$, then $S^{-1}(\operatorname{Ran}(S)) = \operatorname{Dom}(S)$. (10 points)

3.b) Prove that $Dom(S^{-1} \circ S) = Dom(S)$, where S^{-1} denotes the inverse relation to S. (15 points)

4. Let $R := \{(x, y) \in \mathbb{R}^2 \mid x = \sqrt{y+1} \}$ and $S := \{(x, y) \in \mathbb{R}^2 \mid x = \frac{1}{\sqrt{|y|}} \}$. Find the domain of $S \circ R$ and give an argument to support your response. (20 points)