Student No:

Math 103: Quiz \# 7

Spring 2007

You have 40 minutes.

1. Give the definition of the following terms.

1a) A transposition of $I_{n}:=\{1,2, \cdots, n\}$ where $n \in \mathbb{Z}^{+}$. (5 points)

1b) A permutation of $I_{n}:=\{1,2, \cdots, n\}$ where $n \in \mathbb{Z}^{+}$. (5 points)
2. Let $\sigma: I_{4} \rightarrow I_{4}$ be the permutation defined by

$$
\sigma:=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{array}\right)
$$

i.e., $\sigma(1):=4, \sigma(2):=2, \sigma(3):=1, \sigma(4):=3$. Express σ as the composition of a pair of transpositions of I_{4}, i.e., find transpositions θ_{1} and θ_{2} such that $\sigma=\theta_{2} \circ \theta_{1}$. (15 points)
3. Let A and B be sets, $f: A \rightarrow B$ be a function, and $D:=\operatorname{Dom}(f)$. Prove that if f is one-to-one, $f^{-1} \circ f=\operatorname{Id}_{D} . \quad(25$ points $)$
4. Let A, B, C be nonempty sets, $C \subseteq B$, and $f: A \rightarrow B$ be an invertible function. Prove that the inverse image of C under f is equal to the image of C under the inverse function f^{-1} of f. (25 points)

