Student No:

Math 103: Quiz \# 8

Spring 2007

You have 45 minutes.

1. Give the definition of the following terms.
a) a sequence in a set A. (5 points)
b) a sequence of distinct terms in a set A. (5 points)
c) a strictly increasing sequence in a poset B. (5 points)
d) a subsequence of a sequence in a set A. (10 points)
e) a convergent real sequence. (5 points)
f) a convergent real series. (5 points)
g) the geometric series. (5 points)
2. Let $m, n \in \mathbb{Z}^{+}$and $\forall k \in \mathbb{Z}^{+}, I_{k}:=\left\{j \in \mathbb{Z}^{+} \mid j \leq k\right\}$. Prove that there is an onto function $f: I_{m} \rightarrow I_{n}$ if and only if $n \leq m$. (30 points)
Hint: You may use the theorem on the non-existence of onto functions mapping proper subsets of I_{n} onto I_{n} without proof.
3. Construct a bijection mapping $A:=\left\{3 m \mid m \in \mathbb{Z}^{+}\right\}$onto $A:=\{2 n \mid n \in \mathbb{N}\}$. You must prove that the relation you define is actually a bijection (40 points)
