Math 107: Midterm Exam \# 2
 May 5, 2018

Problem 1 Let $\mathbf{A}:=\left[\begin{array}{cccc}1 & 1 & 0 & -3 \\ 1 & -1 & 2 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 0 & -3\end{array}\right]$.
1.a (10 points) Compute the determinant of \mathbf{A} and find out if it is an invertible matrix.
1.b (5 points) What is the rank of A? Why?

Problem 2 (15 points)Use Cramer's rule to solve the following system of equations.

$$
\begin{aligned}
x-2 y-z & =-1 \\
4 x+y-2 z & =1 \\
2 x+4 y-z & =2
\end{aligned}
$$

Warning: Solving the system without using Cramer's rule will not earn you any credit.
Problem 3 Let V be a real vector space and o be the zero vector in V. Prove the following statements.
3.a (5 points) For all $v \in V, 0 . v=o$.
3.b (5 points) For all $\alpha \in \mathbb{R}, \alpha . o=o$.

Problem 4 State the definition of the following terms.
4.a (4 points) Span of a nonempty subset A of a vector space:
4.b (3 points) A finite-dimensional real vector space:
4.c (3 points) A basis of a vector space:
4.d (5 points) A linear transformation $T: V \rightarrow W$ where V and W are vector spaces.

Problem 5 Let V be the vector space of 2×2 matrices. Give an example of the following objects:
5.a (10 points) Three elements $\mathbf{A}, \mathbf{B}, \mathbf{C}$ of V such that $\{\mathbf{A}, \mathbf{B}\}$ and $\{\mathbf{B}, \mathbf{C}\}$ are linearly independent, but $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ is linearly-dependent. Justify your response.
5.b (10 points) A linear transformation $T: V \rightarrow V$ whose null space is two-dimensional. You do not need to show that T is linear, but must find its null space and explain why it is two-dimensional.
5.c (5 points) An onto linear transformation $T: V \rightarrow \mathbb{R}^{2}$ satisfying:

$$
T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

5.d (10 points) Prove that your response to Problem 5.c is actually a linear transformation that is onto.

Problem 6 (10 points) Let V be a vector space, U and W be subspaces of V, and $U \cap W$ denote the intersection of U and W, i.e., $U \cap W:=\{v \in V \mid v \in U$ and $v \in W\}$. Prove that $U \cap W$ is a subspace of V.

$$
\begin{aligned}
\text { 1) a) } A & =\left(\begin{array}{cccc}
1 & 1 & 0 & -3 \\
1 & -1 & 2 & 0 \\
2 & 1 & 0 & 1 \\
2 & 0 & 0 & -3
\end{array}\right) \\
\operatorname{det} A & =-2(2-3 \cdot(-2))-3 \cdot(-2-1 \cdot(-4)) \\
& =-16-6=-22 .
\end{aligned}
$$

Sa A is invertible.
b) Rank $A=4$ since A is invertible sail columns are lin. independent.

$$
\begin{aligned}
& \text { 2) } \begin{array}{ll}
x-2 y-z=-1 \\
4 x+y-2 z=1 \\
2 x+4 y-z=2
\end{array} \quad A=\left(\begin{array}{ccc}
1 & -2 & -1 \\
4 & 1 & -2 \\
2 & 4 & -1
\end{array}\right) \\
& \operatorname{det} A=7+2 \cdot 0-1 \cdot 14=-7 \\
& \operatorname{det}\left(\begin{array}{ccc}
-1 & -2 & -1 \\
1 & 1 & -2 \\
2 & 4 & -1
\end{array}\right)=-1 \cdot 7+2 \cdot 3-1 \cdot 2=-3 \\
& \operatorname{det}\left(\begin{array}{ccc}
1 & -1 & -1 \\
4 & 1 & -2 \\
2 & 2 & -1
\end{array}\right)=-1+4-6=-3 \\
& \operatorname{det}\left(\begin{array}{ccc}
1 & -2 & -1 \\
4 & 1 & 1 \\
2 & 4 & 2
\end{array}\right)=-2+2 \cdot 6-14=-4 \\
& x=\frac{3}{7}
\end{aligned}
$$

3)4) Shave $O \cdot v=O$

$$
O \cdot v=(O+O) \cdot v=O \cdot v+O \cdot v \Rightarrow O \cdot v=O v-O \cdot v=0
$$

b) Shave $\alpha \cdot O=0$.

$$
\alpha \cdot O=\alpha(O+O)=\alpha \cdot O+\alpha \cdot O \Rightarrow
$$

$$
\alpha \cdot 0=\alpha \cdot 0-\alpha \cdot 0=0
$$

4) a) Span of a nonempty subset A of a os.

$$
\omega-\left\{c_{1} v_{1}+\cdots+c_{k} v_{k}: v_{1}, \ldots, v_{k} \in A, c_{1},-, c_{k} \in \mathbb{R}\right\}
$$

b) A finite dimunsianal real vector space is a vector space V with a finite basis $B=\left\{v_{u}, v_{k}\right\}$
c) A basis B of a rotor space V is a linearly independent at such that $S p a n(B)=V$.
d) $T: V \rightarrow W$ is called a linear trans. if $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ for each $v_{1}, v_{2} \in V$ $T(\alpha \cdot v)=\alpha \cdot T(v)$ for each $v \in V, \alpha \in \mathbb{R}$.
5) a) $\quad V=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right\}$

Let $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$

$$
C=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Then of $C_{1} \cdot A+C_{2} \cdot B=\left(\begin{array}{ll}0 & 0 \\ c_{1} & 0\end{array}\right)+\left(\begin{array}{cc}c_{2} & c_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
$\Rightarrow c_{1}=c_{2}=0$ so $\{A, B\}$ are independent.

$$
\begin{gathered}
y c_{1} \cdot B+c_{2} \cdot C=\left(\begin{array}{cc}
c_{1} & c_{1} \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
c_{2} & c_{2} \\
c_{2} & 0
\end{array}\right) \\
=\left(\begin{array}{cc}
c_{1}+c_{2} & c_{1}+c_{2} \\
c_{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

$\Rightarrow C_{2}=0 \Rightarrow C_{1}=0$ So $\{B, C\}$ one independent.
But $A+B=C$ sa $\{A, B, C\}$ are dependent.
b) Let $T: V \longrightarrow V$

$$
\left(\begin{array}{ll}
a & b
\end{array}\right) \longmapsto\left(\begin{array}{ll}
0 & b
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{Null}(T)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b=d=0\right\} \\
& =\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\} \text { and }\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& \text { one independent. }
\end{aligned}
$$

Sa Null (T) is two dimensional
c) $T: V \rightarrow \mathbb{R}^{2} \quad T\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\binom{1}{1}^{T}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\binom{1}{0}$
and want T to be canto.
Let $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\binom{a}{\frac{a+d}{2}}$
i) T is linear since $T\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)\right)$
$=\binom{a+e}{\frac{a+e+d+h}{2}}=T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+T\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ $\binom{a+e}{\frac{a+e}{2}+\frac{d+h}{2}}$
$f \quad T\left(k\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=\binom{k \cdot a}{\frac{k a+k \cdot d}{2}}=k\binom{a}{\frac{a+d}{2}}=k \cdot T\binom{a b}{c d}$
T is canto since fa any $\binom{\alpha}{\beta} \in \mathbb{R}^{2}$,
$T\left(\begin{array}{ll}\alpha & 0 \\ 0 & 2 \beta-\alpha\end{array}\right)=\binom{\alpha}{\frac{\alpha+2 \beta-\alpha}{2}}=\binom{\alpha}{\beta}$.
6) $O \in U, \quad O \in W \Rightarrow O \in U \cap W$

$$
\begin{aligned}
\text { y } v_{1}, v_{2} \in U \cap W \Rightarrow & v_{1}, v_{2} \in U \Rightarrow v_{1}+v_{2} \in u \\
& v_{1}, v_{2} \in W \Rightarrow v_{1}+v_{2} \in W \\
& \Rightarrow v_{1}+v_{2} \in u \cap W .
\end{aligned}
$$

$$
\begin{aligned}
y v \in U \cap W, \alpha \in \mathbb{R}, \quad v \in U & \Rightarrow \alpha \cdot v \in U \\
v \in W & \Rightarrow \alpha \cdot v \in W
\end{aligned}
$$

$$
\Rightarrow \alpha \cdot v \in U \cap N
$$

