Math 303: Quiz # 2

Fall 2004

- You have 30 minutes.
- You may ask any question about the quiz within the first 5 minutes. After this time for any
 question you may want to ask 2 points will be deduced from your grade.
- 1. Show that the following identity holds for all $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$. (5 points)

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = |\vec{a}|^2 (\vec{c} \cdot \vec{b}) \cdot (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{c}).$$

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = |\vec{a}|^2 (\vec{c} \cdot \vec{b}) \cdot (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{c}).$$

$$= \sum_{i=1}^{n} (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) \cdot (\vec{c} \times \vec{d})$$

- 2. Let $\vec{F}(x, y, z) := xy\,\hat{i} + yz\,\hat{j} + xz\,\hat{k}$, where (x, y, z) are Cartesian coordinates and $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along the x-, y-, and z-axes, respectively.
 - 2.a) Is \vec{F} a conservative force? Why? (5 points)

2.b) Give the statement of the Divergence theorem and use it to evaluate $\int_{\sigma} \vec{F} \cdot \hat{n} \, d\sigma$, where $\vec{F}(x,y,z) := xy \,\hat{i} + yz \,\hat{j} + xz \,\hat{k}$, the surface σ is the boundary of the cube of unit side length that is shown in the following figure, and \hat{n} is the unit outward normal vector to σ . (10 points)

$$I = \int_{0}^{\infty} \vec{F} \cdot \hat{n} d\sigma = \int_{0}^{\infty} \vec{F} \cdot \vec{F} dV$$

$$\vec{\nabla} \cdot \vec{F} = \partial_{x} (xy) + \partial_{y} (yz) + \partial_{z} (xz)$$

$$= y + z + x$$

$$I = \int_{0}^{\infty} dx \int_{0}^{\infty} dy \int_{0}^{\infty} dz \left[x + y + z \right]$$

$$= 3 \int_{0}^{\infty} u du \int_{0}^{\infty} dy \int_{0}^{\infty} dw$$

$$= 3 \left[\frac{u^{2}}{2} \Big|_{0}^{1} + v \Big|_{0}^{1} + w \Big|_{0}^{1} \right] = 3 \left(\frac{1}{2} + 1 + 1 \right)$$

$$= \frac{15}{2}.$$