Math 303, Fall 2006 Assignment for October 05-09

I. Read pages 162-173 of the textbook (Riley, Hobson, \& Bence, 3rd Edition)
II. Solve Problems $5.11,5.13,5.14,5.16$ on pages $180-181$ of the textbook and the following problems.

1. Use the method of lagrange multipliers to find the volume of the largest rectangular parallelepiped with faces parallel to x-, y-, and z-axes that is inscribed in the ellipsoid defined by

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1,
$$

where $a, b, c \in \mathbb{R}^{+}$.
2. Find the point(s) on the plane defined by $2 x+3 y+z=11$ for which $4 x^{2}+y^{2}+z^{2}$ has a minimum value.
3. Let $a, b, c \in \mathbb{R}^{+}$. Find the point(s) on the plane defined by $a x+b y+c z=1$ that are closest to the origin $x=y=z=0$.
4. Find the shortest distance from the origin to the line of intersection of the planes defined by $2 x+y-z=1$ and $x-y+z=2$.

