Math 303, Fall 2006 Assignment for November 23-27

I. Read pages 433-453 of the textbook (Riley, Hobson, \& Bence, 3rd Edition)
II. Solve Problems 13.2, 13.3, 13.5, 13.7 on page 460 of the textbook and the following problems.

1. Find the Fourier transform of the following functions:

$$
\begin{aligned}
& f(x):=\left\{\begin{array}{ccc}
-1 & \text { for } & -\pi<x<0 \\
1 & \text { for } & 0<x<\pi \\
0 & \text { for } & |x|>\pi
\end{array}\right. \\
& g(x):=\left\{\begin{array}{ccc}
|x| & \text { for } & |x|<1 \\
0 & \text { for } & |x|>1
\end{array}\right. \\
& h(x):=\left\{\begin{array}{ccc}
\sin x & \text { for } & |x|<\frac{\pi}{2} \\
0 & \text { for } & |x|>\frac{\pi}{2}
\end{array}\right.
\end{aligned}
$$

2. Find the Fourier transform of the function,

$$
f(x):=\left\{\begin{array}{ccc}
2 a-|x| & \text { for } & |x|<2 a \\
0 & \text { for } & |x|>2 a
\end{array}\right.
$$

where $a \in \mathbb{R}^{+}$, and use your result and Parseval's identity to evaluate

$$
\int_{0}^{\infty} \frac{\sin ^{4}(a u)}{u^{4}} d u
$$

