## Math 303: Midterm Exam \# 1

Fall 2006

- Write your name and Student ID number in the space provided below and sign.

| Student's Name: |  |
| :---: | :--- |
| ID Number: |  |
| Signature: |  |

- You have 80 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:


## Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

## To be filled by the grader:

| Actual Grade: |  |
| :---: | :--- |
| Adjusted Grade: |  |

Problem 1. Let $a:=i^{\sqrt{2}}$ and $b:=(\sqrt{2})^{i}$. Find the polar representation of all values of the product of $a$ and $b$. (15 points)

Problem 2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $F(x, y):=\frac{y^{2}}{2}-e^{x}(y-1)$ for all $x, y \in \mathbb{R}$. Find the stationary point(s) of $F$ and determine whether it is (they are) a maximum, minimum, or saddle point. (20 points)

Problem 3. Let $\vec{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $\vec{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be differentiable functions and $\vec{C}:=$ $\vec{\nabla} \times(\vec{A} \times \vec{B})$. Use the properties of the Kronecker delta and Levi Civita epsilon symbols to show that the component of $C$ along the $x$-axis is given by

$$
\vec{B} \cdot \vec{\nabla} A_{1}-\vec{A} \cdot \vec{\nabla} B_{1}+A_{1} \vec{\nabla} \cdot \vec{B}-B_{1} \vec{\nabla} \cdot \vec{A},
$$

where $A_{1}$ and $B_{1}$ are respectively components of $\vec{A}$ and $\vec{B}$ along the $x$-axis. ( 15 points)

Problem 4. Give the statement of the Stokes theorem and prove it (using the Green's theorem in the plane) for a vector field $\vec{A}$ that is defined on the following surface. (25 points)

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3}|x=0,|y| \leq 1,|z| \leq 2\} .\right.
$$

Problem 5. Let $S$ be the boundary of the region $V$ defined by

$$
V:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1\right\},
$$

$\hat{n}$ be the unit outward normal vector to $S$, and $\vec{J}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the vector field defined by:

$$
\vec{J}(x, y, z)=y z \hat{i}-x z^{2} \hat{j}+\left(x^{2}+y^{2}\right) z^{3} \hat{k}
$$

where $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors along positive $x$-, $y$-, and $z$-axes. Compute the surface integral of $\vec{J} \cdot \hat{n}$ on $S$, i.e., $\iint_{S} \vec{J} \cdot \hat{n} d s$. (25 points)
Hint: Use divergence theorem.

