Math 303: Midterm Exam \# 2

Fall 2006

- Write your name and Student ID number in the space provided below and sign.

Student's Name:	
ID Number:	
Signature:	

- Make sure that your exam paper consists of 5 problems (6 pages)
- You have 80 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1.

a) Show that $\int_{-\infty}^{\infty} e^{i x y} d y=2 \pi \delta(x)$ for all $x \in \mathbb{R}$, where $\delta(x)$ is the Dirac delta function. (10 points)
b) The integral $I(x):=\int_{-\infty}^{\infty} \frac{e^{i x y}}{y} d y$ may be viewed as the solution of the differential equation $I^{\prime}(x)=2 \pi i \delta(x)$ that is an odd function $(I(-x)=-I(x))$. Use these properties to express $I(x)$ in terms of the step function:

$$
\theta(x):=\left\{\begin{array}{lll}
0 & \text { for } & x<0 \\
1 & \text { for } & x>0 .
\end{array} \quad\right. \text { (5 points) }
$$

Problem 2. Use the method of Fourier transform to obtain a particular solution of the differential equation: $y^{\prime \prime}+y=\delta(x)$, where $\delta(x)$ is the Dirac delta function. (25 points) Hint: You may use the following formula

$$
\int_{-\infty}^{\infty} \frac{e^{i k x}}{1+\nu k} d k=\nu i \pi e^{-\nu i x} \operatorname{sign}(x)
$$

where $\nu \in\{-1,1\}$ and $\operatorname{sign}(x):=\left\{\begin{array}{ccc}-1 & \text { for } & x<0 \\ 1 & \text { for } & x>0,\end{array}\right.$

Problem 3. Determine a geodesic on the cylinder: $S:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$ that joins the points $\vec{p}_{1}=(1,0,0)$ and $\vec{p}_{2}=(0,1,1) . \quad(20$ points $)$
Hint: Use cylindrical coordinates (r, θ, z) and express the geodesic as $z=z(\theta)$.

Problem 4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $f(z)=e^{z}$ for all $z \in \mathbb{C}$.
a) Determine the real and imaginary parts $u(x, y)$ and $v(x, y)$ of $f(x+i y)$ for all $x, y \in$ R. (10 points)
b) Prove that f is an entire function. (10 points)

Problem 5. Evaluate the following contour integrals along the circle $C:=\{z \in \mathbb{C}| | z \mid=3\}$ (counterclockwise).
a) $\oint_{C} \frac{\sin \left(\frac{\pi z}{4}\right)}{z-2} d z . \quad$ (5 points)
b) $\oint_{C} \frac{\sin \left(\frac{\pi z}{4}\right)}{(z-2)^{2}} d z . \quad$ (5 points)
c) $\oint_{C} \frac{\sin \left(\frac{\pi z}{4}\right)}{(z-2)(z+4)} d z . \quad$ (10 points)

