Math 303: Quiz # 2

Fall 2008

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 50 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

- 1. Find a differential function $f: \mathbb{R}^2 \to \mathbb{R}$ such that both of the following conditions hold.
 - i) The differential f(x, y) dx + xy dy is exact.
 - ii) For all $x \in \mathbb{R}$, f(x, x) = 0. (15 points)

$$\lambda = (\lambda x) \frac{\xi}{x \xi} = \frac{1}{4\xi}$$

=)
$$f(x_1y_1) = \int y dy + g(x_1) = \frac{y^2}{2} + g(x_1)$$

$$f(x_i,x) = 0 \Rightarrow \frac{x^2}{2} + g(x) = 0 \Rightarrow g(x) = -\frac{x^2}{2}$$

So
$$\left\{f(x, 7) = \frac{y^2 - x^2}{2}\right\}$$

2. Find a real number a such that f(x-2y) is a solution of

$$\frac{\partial^2 \phi}{\partial x^2} + a \frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 \phi}{\partial y^2} = 0,$$

for every twice differentiable function $f: \mathbb{R} \to \mathbb{R}$. (20 points)

$$\frac{\partial}{\partial x} f(x-2y) = f(x-2y)$$

$$\frac{\partial}{\partial y} f(x-2y) = -2 f'(x-2y)$$

$$\frac{\partial^2}{\partial x^2} f(x-2y) = f''(x-2y)$$

$$\frac{3x^{2}}{3x^{2}} f(x-2y) = -2 \frac{3}{3x} f(x-2y) = -2 f''(x-2y)$$

$$\frac{\partial^2}{\partial y^2} f(x-2y) = -2\frac{\partial}{\partial y} f'(x-2y) = 4f''(x-2y)$$

$$0 = \frac{3 f(x-2\gamma)}{3 x^2} + a \frac{3 f(x-2\gamma)}{3 x 3 \gamma} + \frac{3^2 f(x-2\gamma)}{3 \gamma^2}$$

$$\langle - \rangle \quad 0 = \int_{-\infty}^{\infty} (x - 2y) + \alpha \left(-2 \int_{-\infty}^{\infty} (x - 2y) \right) + 4 \int_{-\infty}^{\infty} (x - 2y)$$

$$(-)$$
 0 = $(1-20+4) f''(x-2y)$

3. Consider the function
$$g: \mathbb{R}^2 \to \mathbb{R}$$
 defined by $g(x,y) = (x^2 - 2y^2)e^{2x-y}$.

a) Show that
$$(0,0)$$
 is a stationary point of g . (10 points)
$$S_{x} = \left[2x + 2(x^{2} - 2y^{2})\right] e^{2x-y} = 2(x^{2} - 2y^{2} + x) e^{2x-y}$$

$$S_{y} = \left[-4y - (x^{2} - 2y^{2})\right] e^{2x-y} = (-x^{2} + 2y^{2} - 4y) e^{2x-y}$$

$$S_{y} = \left[-4y - (x^{2} - 2y^{2})\right] e^{2x-y} = (-x^{2} + 2y^{2} - 4y) e^{2x-y}$$

$$S_{y} = \left[-4y - (x^{2} - 2y^{2})\right] e^{2x-y} = (-x^{2} + 2y^{2} - 4y) e^{2x-y}$$

$$S_{y} = \left[-4y - (x^{2} - 2y^{2})\right] e^{2x-y}$$

$$S_{y} = \left[-4y - (x^{2} - 2y^{2})\right]$$

$$S_{y} = \left[-4y -$$

b) Determine whether
$$(0,0)$$
 is a local minimum, maximum, or saddle point of g . (20 points)

$$9_{xx} = 2[2x+1+2(x^2-2y^2+x)]e^{2x-y}$$

$$S_{xy} = 2[-4y - (x^2 - 2y^2 + x)]e^{2x-7}$$

$$9yy = [8y - 4 - (-x^2 + 4y^2 - 4y)] e^{2x-y}$$

9/y(0,0) = -4

=1 Hessian at
$$(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & -4 \end{pmatrix}$$
 So $(0,0)$ is

a saddle point because eigenvalues of the

Hen icm have expenite sign.

c) Find the other stationary point of
$$g$$
. (10 points)

c) Find the other stationary point of
$$g$$
. (10 points)
$$S_{x} = 0 \implies X^{2} - 2y^{2} + x = 0$$

$$S_{y} = 0 \implies -x^{2} + 2y^{2} - 4y = 0$$

$$X = 4y$$

$$X = 4y$$

$$|6y^{2}-2y^{2}+4y=0|=>2y(7y+2)=0$$

$$= \begin{cases} y = 0 & = 1 & x = 0 \\ y = -\frac{2}{7} & = \rangle & x = -\frac{8}{7} & = \rangle \left((-\frac{8}{7}, -\frac{7}{7}) \right) \end{cases}$$

4. Use the method of lagrange multipliers to find the area of the largest rectangle with sides parallel to x- and y-axes that is inscribed in the ellipse defined by $a^2x^2 + b^2y^2 = c^2$, where $a, b, c \in \mathbb{R}^+$. (25 points)

$$F_{x} = 4\gamma + 2\alpha^{2}\lambda \times = 0$$

$$F_{\gamma} = 4x + 2b^2 \lambda \gamma = 0$$

$$\lambda = -\frac{2x}{b^2 \gamma}$$

$$y^2 = \frac{a^2}{b^2} \times z$$

$$= y = \frac{a}{b} \times -\frac{a}{b} \times -\frac{a$$

$$=) \quad \frac{Y}{a^2 x} = \frac{x}{b^2 7} \quad =)$$

$$a^{2}x^{2} + b^{2}(\frac{a^{2}}{b^{2}}x^{2}) - c^{2} = 0$$

$$2a^{2}x^{2} = c^{2} = 0$$

$$x = \frac{c}{\sqrt{2}a}$$

$$\gamma = \frac{c}{\sqrt{2}b}$$

=1
$$A = 4 \times y = 4 \left(\frac{c}{\sqrt{z_a}}\right) \left(\frac{c}{\sqrt{z_b}}\right)$$

$$= \int_{A} A = \frac{2c}{ab}$$