Math 303: Quiz # 2
Fall 2008

e Write your name and Student ID number in the space provided below and sign.

Name, Last Name:
ID Number:

Signature:

e You have 50 minutes.

¢ You may use any statement which has been proven in class, except for the cases where you are

asked to reproduce the proof of that statement.

e You may ask any question about the quiz within the first 5 minutes. After this time for any
question you may want to ask 5 points will be deduced from your grade (You may or may not
get an answer to your question(s).)
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1. Find a differential function f : R? — R such that both of the following conditions hold.
i) The differential f(z,y) dx + zy dy is exact.
ii) For all z € R, f(z,xz) =0. (15 points)
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2. Find a real number a such that f(x — 2y) is a solution of

0%¢ 0%¢ 0%¢ _
522 T %00y Tz = 0

for every twice differentiable function f: R — R. (20 points)

o
2R Yex-2y) = § ox-2y)
> X
Vi
92 fex-2y) = "9‘3 Saate &
ay
2 /H
3 ;‘;(‘(__L?) = # (x’?-’Y’
dx* s
2 %0 J =~ 2 5 oy
T o = (=1
2 Fex-2p = Y’
2% 37 {y
/
Y _ o 2 £tx-2y) = 4 3 (x-2y)
0 fex-2y) T o
a1 ¢
[
. x 0 Fc x-27)
2 Fax-1y) chf__:_i) + 9t
0= 3 5 xdY 1

4
31((x‘-27)-\- m(,,_ gll(x’z‘”) 4+ N §(x‘7»1\
4= 0 = -

d
(1 _2a+ M) § (x-2v)




3. Consider the function g : R — R defined by g(z,y) = (2 — 2¢?)e?*¥.

a) Show that (0,0) is a stationary point of g. (10 points) 5 5 ) e 2 x-y
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b) Determine whether (0, 0) is a local minimum, maximum, or saddle point of g. (20 points)
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c) Find the other stationary point of g. (10 points)
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4. Use the method of lagrange multipliers to find the area of the largest rectangle With-,fﬁﬁes

parallel to z— and y-axes that is inscribed in the ellipse defined by a?z? + b*y? = ¢2, where
a,b,c € RT. (25 points)
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