Math 303: Quiz # 3

Fall 2008

· Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	8:

- · You have One hour.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- · You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the statement of the divergence theorem in space (\mathbb{R}^3) . To get full credit you must define all the symbols you use in the formulas you write and explain all the conditions under which these formulas are valid. (20 points)

Let T be a region in R3 that is bounded by a closed piecewise surface S and J: R3-1R3 be a vector freld that is differentiable on an open subset of IR3 containing V. Tren

2. Use divergence theorem to evaluate the surface integral $I := \iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$, where S is the boundary of the region V in \mathbb{R}^3 that is defined by $0 \le z \le \sqrt{1 - x^2 - y^2}$, \mathbf{n} is the unit normal outward vector to S,

$$\mathbf{F}(x, y, x) = \sin(yz)\mathbf{i} + y^2\mathbf{j} + \sin(xy)\mathbf{k}.$$

and i, j, k are respectively the unit vectors along the x-, y-, and z-axes. (20 points)

$$I = \iiint \nabla \cdot \vec{F} \, dV$$

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} \sin(yz) + \frac{\partial}{\partial y} y^2 + \frac{\partial}{\partial z} \sin(xy)$$

$$= 2y$$

$$use sphenical coordinates$$

use sphenical coordinates

on
$$V$$
 $r \leq L$, $\theta \in [0, \frac{\pi}{2}]$, $\varphi \in [0, 2\pi)$
 $I = \int \int (2\eta) r^2 \sin \theta \, d\theta \, d\theta \, dr$

$$y = r \sin \theta \sin \varphi$$

$$= 1 = 2 \int_{0}^{1} \int_{0}^{\pi/2} \int_{0}^{2\pi} r^{3} \sin^{2}\theta \sin \varphi \, d\varphi \, d\theta \, dr$$

$$= 2 \int_{0}^{1} r^{3} dr \int_{0}^{\pi/2} \sin^{2}\theta \, d\theta \int_{0}^{2\pi} \sin \varphi \, d\varphi$$

$$= 2 \int_{0}^{1} r^{3} dr \int_{0}^{\pi/2} \sin^{2}\theta \, d\theta \int_{0}^{2\pi} \sin \varphi \, d\varphi$$

$$= -\cos \varphi \Big|_{0}^{2\pi} = 0$$

- **3.** Let **i** and **j** be the unit vectors along the x- and y-axis in \mathbb{R}^2 , (r, θ) be the polar coordinates, i.e., $r := \sqrt{x^2 + y^2}$ and $\theta := \tan^{-1}(y/x)$, $F_1(r, \theta)$ and $F_2(r, \theta)$ be differentiable functions on the unit disc D defined by $r \leq 1$, and $\mathbf{F}(r, \theta) := F_1(r, \theta)\mathbf{i} + F_2(r, \theta)\mathbf{j}$.
- **3.a)** Give the statement of Green's theorem in polar coordinates for D and $\mathbf{F}(r,\theta)$, i.e., express all the quantities appearing in the statement of the Green's theorem in terms of r, θ , $F_1(r,\theta)$, $F_2(r,\theta)$, and their partial derivatives with respect to r and θ . (30 points)

In cartesian coordinates Green's theorem states:

$$\begin{cases}
\vec{F} \cdot d\vec{r} = \int \left(\frac{3}{3x}F_z - \frac{3}{3y}F_z\right) dx dy \\
\vec{F} \cdot d\vec{r} = \int \left(\frac{3}{3x}F_z - \frac{3}{3y}F_z\right) dx dy
\end{cases}$$

$$x = rcn0 , y = rsin0$$
on $3D : r = \frac{1}{2} = 3$ $dx = -sin3d3$, $dy = cn0d3$

$$\frac{3D}{3D} = \frac{1}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} = \frac{1}{3} + \frac{1}$$

3.b) Use Green's theorem to compute $J:=\iint_D \left(\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y}\right) dx\,dy$ where D is the unit disc defined by $r\leq 1$ and $\mathbf{F}(r,\theta):=e^{-r^2}\sin\theta$ $\mathbf{i}-e^{r^2}\cos\theta$ \mathbf{j} . (20 points)

$$J = \oint \vec{F} \cdot d\vec{r}$$

$$= \int_{0}^{2\pi} \left[-F_{1}(10) \sin \theta + F_{2}(10) \cos \theta \right] d\theta$$

$$= \int_{0}^{2\pi} \left[-e^{-1} \sin^{2}\theta + e \cos^{2}\theta \right] d\theta$$

$$= -e^{-1} \int_{0}^{2\pi} \left(\frac{1-\cos^{2}\theta}{2} \right) d\theta + e \int_{0}^{2\pi} \left(\frac{1+\cos^{2}\theta}{2} \right) d\theta$$

$$= -e^{-1} \left(\pi - \frac{\sin^{2}\theta}{4} \right)^{2\pi} + e \left(\pi + \frac{\sin^{2}\theta}{4} \right)^{2\pi}$$

 $= \pi \left(e - \frac{1}{e} \right) ,$