Math 303: Midterm Exam 1

Fall 2008

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have One hour and 45 minutes (105 minutes).
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Find the stationary points of $f(x, y)=\left(x^{2}+2\right)^{2}+\left(y^{2}+2\right)^{2}-6 x^{2} y^{2}-8$ in \mathbb{R}^{2} and apply the second derivative test to determine if they are minimum, maximum, or saddle points. (20 points)

Problem 2. Find the points on the paraboloid $z=(x-1)^{2}+(y-2)^{2}+\frac{3}{2}$ that are closest to the point (1,2,3). (20 points)

Problem 3.

a) Let $\epsilon_{i j k}$ denote the Levi Civita tensor. Show that for every 3×3 matrix M with entries $M_{i j}$ we have $\sum_{i, j, k=1}^{3} \epsilon_{i j k} M_{i j} M_{i k}=0 . \quad$ (10 points)
b) Let $\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be twice differentiable functions. Use properties of the Levi Civita symbol to show that $\nabla \cdot(\nabla f \times \mathbf{A})=-\nabla f \cdot(\nabla \times \mathbf{A})$. (10 points)

Problem 4. Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the force field given by

$$
\mathbf{F}=\left[3 x^{2} y+f(y)\right] \mathbf{i}+\left[-4 y^{3} x+g(x)\right] \mathbf{j}+\mathbf{k}
$$

where $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable functions.
a) Find the general form of f and g so that \mathbf{F} is a conservative force. (10 points)
b) For the case that $f(1)=g(1)=0$ and $g^{\prime}(0)=1$ compute the work done by \mathbf{F} on a particle that moves from the point $(1,0,0)$ to the point $(0,1,0)$ along the semicircle $y=\sqrt{1-x^{2}}$ in the x - y-plane counterclockwise. (20 points)

Problem 5.

Let r be a positive real number and z be a nonzero complex number that satisfies

$$
(z-r)^{2}=r^{2} e^{z}
$$

Show that z must have a positive real part. (10 points)
Hint: Compute the modulus of both sides of the above equation.

