Math 303: Midterm Exam 2

Fall 2008

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have One hour and 45 minutes (105 minutes).
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. State and prove Green's theorem in plane for a vector field $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined on the region: $D:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 1.\right\}$. (15 points)

Problem 2. Find $g(x)$ such that $e^{-|x|}$ is a solution of $y^{\prime \prime}+y=g(x) . \quad$ (10 points)

Problem 3. Find the real Fourier series for the following function. (15 points)

$$
f(x)=\left\{\begin{array}{ll}
\sin x & \text { for } \quad-\pi \leq x<0, \\
\cos x & \text { for } \quad 0 \leq x<\pi,
\end{array} \quad f(x+2 \pi)=f(x)\right.
$$

Hint: $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta), 2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$, $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$.

Problem 4. Let $f(x)$ denote the inverse Fourier transform of $e^{-|k|}$. Find the Fourier transform of $\left(x^{2}+1\right) e^{-|x|} f(x)$. (15 points)

Problem 5. A particle moves in the $x-y$ plane in such a way that its speed is given by its distance from the origin, i.e., $r:=\sqrt{x^{2}+y^{2}}$. Determine the path the particle should take to go from the $(1,0)$ to $(0,1)$ such that the travel time is minimized. (25 points) Hint: Use polar coordinates (r, ϕ) where the line element $d \ell$ satisfies $d \ell^{2}=d r^{2}+r^{2} d \phi^{2}$. Note that the speed of the particle is defined to be $d \ell / d t$.

Problem 6. Let $v(x, y):=y^{3}-3 x^{2} y+y$.
a) Show that v is a solution of the Laplace equation. (5 points)
b) Find an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $v(x, y)$ is the imaginary part of $f(x+i y)$ and $f(0)=1$. Give an explicit formula for $f(z)$. (15 points)

