Math 303, Fall 2008
 Assignment for Sep. 26 - Oct. 15

Reading Assignment: Read pages 151-179 of the textbook (Riley, Hobson, \& Bence, 3rd Edition)

Homework 2 (Due on Thursday, October 16, 14:00): Solve Problems $\mathbf{5 . 3}, \mathbf{5 . 5}, \mathbf{5 . 9}, 5.15,5.32$ on pages $180-184$ of the textbook and the following problems.

1. Use the method of lagrange multipliers to find the volume of the largest rectangular parallelepiped with faces parallel to x-, y-, and z-axes that is inscribed in the ellipsoid defined by

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

where $a, b, c \in \mathbb{R}^{+}$.
2. Find the point(s) on the plane defined by $2 x+3 y+z=11$ for which $4 x^{2}+y^{2}+z^{2}$ has a minimum value.
3. Find the shortest distance from the origin to the line of intersection of the planes defined by $2 x+y-z=1$ and $x-y+z=2$.

