Math 303, Fall 2010
 Assignment for Dec. 15-21

- Read pages $824-839$ of the textbook (Riley-Hobson-Bence, 3rd Edition).
- Solve Problems 24.1, 24.3, and 24.4 on Page 867 of the textbook.
- Solve the following problems.

1. Find the real and imaginary parts $u(x, y)$ and $v(x, y)$ of the following functions and determine if there is a region in \mathbb{C} where they are analytic.

$$
\begin{aligned}
& f(z)=\frac{2 z+3}{z^{2}+2} \\
& g(z)=\frac{\sinh (z)}{z^{*}}
\end{aligned}
$$

2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ be analytic functions in a region $D \subseteq \mathbb{C}$. Prove that their product is also analytic in this domain and that

$$
[f(z) g(z)]^{\prime}=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)
$$

3. Find the analogues of the Cauchy-Riemann conditions in the polar coordinates (r, θ), i.e., let $u(r, \theta)=\Re\left[f\left(r e^{i \theta}\right)\right]$ and $v(r, \theta)=\Im\left[f\left(r e^{i \theta}\right)\right]$, where \Re and \Im respectively stand for the real and imaginary parts of their argument, and find conditions on u and v such that f is analytic at some $z \in \mathbb{C}$.
4. Show that $u(x, y)=\cosh y \cos x$ satisfies the Laplace's equation. Find an analytic function $f(z)$ such that $u(x, y)$ is the real part of $f(x+i y)$.
5. Repeat the previous problem for $u(x, y)=\frac{y}{(1-x)^{2}+y^{2}}$.

Note: You do not need to turn in your solution to the above problems.

