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1 Prologue

Mathematics has always had many great minds contributing to form something that is truly amazing. In
the beginning of mathematics, cultures were much more closed off than they are today. As time went on,
cultures realized how beneficial the sharing of ideas could be. In the 17th, 18th, and 19th centuries, countries
were becoming much more open to collaboration which allowed for a revolution of new ideas. Once calculus
was discovered, new doors for mathematics were opened. In the 18th century, the Divergence Theorem
was proposed. This theorem “equates a surface integral with a triple integral over the volume inside the
surface” [6]. In the following century it would be proved along with two other important theorems, known
as Green’s Theorem and Stokes’ Theorem. Green’s Theorem can be described as the two-dimensional case
of the Divergence Theorem, while Stokes’ Theorem is a general case of both the Divergence Theorem and
Green’s Theorem. Overall, once these theorems were discovered, they allowed for several great advances in
science and mathematics which are still of grand importance today.

2 The Divergence Theorem

2.1 History of the Divergence Theorem

The origins of applied mathematics can be traced all the way back to a man named Joseph-Louis Lagrange.
The work Lagrange started in the 18th century was made possible because of the mathematicians before
him such as Isaac Newton with his discovery of calculus. At the age of nineteen, Lagrange sent his work
on calculus of variations to Leonhard Euler in 1755 [11]. Euler had written back explaining how impressed
he was with his results. Lagrange was then appointed professor of mathematics at the Royal Artillery
School about one month later [11]. His great talent and original ideas were already being noticed by several
well-known mathematicians. It was not long before Lagrange was applying the calculus of variations to
mechanics and gained even more popularity in the mathematical and scientific worlds. In 1757, he was
a leading founder of a new society called the Royal Academy of Sciences of Turin [11]. One of the main
goals of the society was to publish articles in the Mélanges de Turin which translates to “mixture of Turin”
[11]. Lagrange contributed greatly to the first three volumes of this journal. He then began working in
differential equations and various applications of mathematics such as fluid mechanics [11]. In 1764, he
discovered what would be known as the Divergence Theorem [15]. Although he did not provide a proof for
this theorem, he would go on to formulate a great many other works. The Divergence Theorem would take
much more manpower to finally bring forth a proof. The men who would make the most notable advances
were mathematicians such as Karl Friedrich Gauss, George Green, and Mikhail Vasilyevich Ostrogradsky.

The Divergence Theorem would have no more progress until a man named Karl Friedrich Gauss rediscovered
it in 1813 [14]. As a child, Gauss was known to have extraordinary talent. He is known for summing the
integers 1 to 100 at a very young age in elementary school [8]. Gauss would be the first to inscribe a seventeen-
gon and at the age of only nineteen [8]. He published his discovery in the Disquisitiones Arithmeticae or
“number research” [8]. In 1799, Gauss received his degree from the Brunswick Collegium Carolinum [8]. He

3



then earned his doctorate at the University of Helmstedt with his submission of the Fundamental Theorem
of Algebra [8]. Gauss would then go on to make significant advances in the Divergence Theorem and its
special case now known as Green’s Theorem [8]. In 1813, Gauss formulated Green’s Theorem, but could
not provide a proof [14]. Although Gauss did excellent work, he would not publish his results until 1833
and 1839 [2]. This would, in fact, be too late to receive proper credit as the Russian Mikhail Vasilyevich
Ostrogradsky would be the first to prove the Divergence Theorem 1831 [2]. Another mathematician, George
Green, rediscovered the Divergence Theorem,without knowing of the work Lagrange and Gauss [15]. Green
published his work in 1828, but those who read his results could not thoroughly understand his work, and
thus nearly discarded it. His work contained the two-dimensional case of the Divergence Theorem, Green’s
Theorem.

On September 24, 1801, Ostrogradsky was born [12]. In 1816, he studied physics and mathematics at the
University of Kharkov [12]. However, Ostrogradsky never received his degree due to religious and internal
problems [12]. Instead he headed to Paris and studied under several great mathematicians, such as Pierre-
Simon Laplace, Joseph Fourier, and Augustin-Louis Cauchy [12]. In 1831, he rediscovered the Divergence
Theorem and provided a proof. Finally, the theorem was proved.

2.2 A Proof of the Divergence Theorem

The Divergence Theorem. Let T be a subset of R3 that is compact with a piecewise smooth boundary. Now let
F : R3

→ R3 be a vector-valued function with continuous first partial derivatives defined on a neighborhood of T, ∂T.
Then $

T

div FdV =

"
∂T

F · n dA,

where n is normal, or perpendicular, to the surface ∂T, and where V is the volume of T and A is the area of ∂T.

Proof. Proving this theorem for a rectangular parallelepiped will in fact prove the theorem for any arbitrary
surface, as the nature of the Riemann sums of the triple integral ensures this.

Let T = {(x, y, z)| x1<x<x2, y1<y<y2, z1<z<z2} with ∂T outwardly orientated, and let the sides T1 and
T2 of T be perpendicular to the x-axis, the sides T3 and T4 of T be perpendicular to the y-axis, and the sides
T5 and T6 of T be perpendicular to the z-axis, where the lower subscript represents a closer proximity to the
origin.
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Let F = [F1,F2,F3]. Then,$
T

div FdV =

$
T

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx dy dz

=

$
T

∂F1

∂x
dx dy dz +

$
T

∂F2

∂y
dx dy dz +

$
T

∂F3

∂z
dx dy dz

=

z2∫
z1

y2∫
y1

(F1(x2, y, z) − F1(x1, y, z)) dy dz +

z2∫
z1

x2∫
x1

(F2(x, y2, z) − F2(x, y1, z)) dx dz

+

y2∫
y1

x2∫
x1

(F3(x, y, z2) − F3(x, y, z1)) dx dy.

=

"
T2

F1 dy dz −
"
T1

F1 dy dz +

"
T4

F2 dx dz −
"
T3

F2 dx dz +

"
T6

F3 dx dy −
"
T5

F3 dx dy

With this set up n can be calculated for each side of the surface T, and is as follows:
For T1 : n = −i, so F · n = −F1. The area is dA = dydz.
For T2 : n = i, so F · n = F1. The area is dA = dydz.
For T3 : n = −j, so F · n = −F2. The area is dA = dxdz.
For T4 : n = j, so F · n = F2. The area is dA = dxdz.
For T5 : n = −k, so F · n = −F3. The area is dA = dxdy.
For T6 : n = k, so F · n = F3. The area is dA = dxdy.

Substituting the above into the right-hand side of the last equation,"
T2

F1 dy dz −
"
T1

F1 dy dz +

"
T4

F2 dx dz −
"
T3

F2 dx dz +

"
T6

F3 dx dy −
"
T5

F3 dx dy

=

"
T2

F · n dA +

"
T1

F · n dA +

"
T4

F · n dA +

"
T3

F · n dA +

"
T6

F · n dA +

"
T5

F · n dA

=

6∑
i=1

"
Ti

F · n dA

Thus, $
T

div FdV =

"
∂T

F · n dA.

�
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2.3 An Example of the Divergence Theorem

Example 1. Given the vector-valued function F = [x, y, z−1] and the volume of an object defined as x2+y2+(z−1)2 = 9,
and 1 ≤ z ≤ 4, show both sides of the Divergence Theorem [3].

Calculating the divergence of F:

∇ · F = 3

Using the left side of the Divergence Theorem$
T

∇ · Fdv =

$
T

3dv

We will convert to polar coordinates using

x =r cosθ sinφ

y =r sinθ cosφ

z =1 + r cosθ

Taking the Jacobian

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= r2 sinφ

$
T

3dv =

$
T

3|J|dθdφdr =

3∫
0

π
2∫

0

2π∫
0

3r2 sinφdθdφdr = 54π

Solving for the right side of the Divergence Theorem"
S

F · ndA =

"
S1

F · ndA +

"
S2

F · ndA

Solving for the first surface "
S1

F · ndA =

"
[x, y, z − 1] · [0, 0,−1]dA = 0

Solving for the second surface and parametrizing the curve

r(u, v) = [3 cos u · sin v, 3 sin u · sin v, 1 + 3 cos u]
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Solving for the normal vector

n =
∂r
∂u
×
∂r
∂v

= 9[cos u · sin2 v, sin u · sin2 v, sin v · cos v]

Substitute for r(u, v) and n, we then solve

"
S2

F · ndA =

π
2∫

0

2π∫
0

F(r(u,v)) · n dudv = 54π

"
S

F · ndA = 0 + 54π = 54π

3 Green’s Theorem

3.1 History of Green’s Theorem

Sometime around 1793, George Green was born [9]. He would later go to school during the years 1801 and
1802 [9]. This meant he only received four semesters of formal schooling at Robert Goodacre’s school in
Nottingham [9]. Not very much is known of Green except that he helped work in his family’s business. He
must have been working on mathematics throughout his time in the family business, but it is unclear how
exactly he came across the advanced material he had learned. In 1823, Green joined a library in Nottingham
and had access to more advanced mathematics [9]. In 1828, he published his own work which was left nearly
unnoticed [9]. This work contained what is now known as Green’s Theorem, but it was not the main idea
of the essay and was not yet considered to be the two-dimensional case of the Divergence Theorem [9]. His
magnificent work could not be realized by those around him as it was too advanced. He died in 1840 and it
wasn’t until 1845 that William Thomson republished Green’s work and realized the importance of Green’s
mathematics [9].

Another prominent mathematician of the 19th century was Augustin-Louis Cauchy. He was born in 1789
and met famous mathematicians such as Laplace and Lagrange by 1802 [7]. Lagrange and Laplace were
friends with Cauchy’s father and took a great interest in Cauchy’s education. They insisted he learn classical
languages at École Centrale du Panthéon [7]. In 1805, he attended École Polythechnique and had André-
Marie Ampère as his tutor [7]. Cauchy wrote his first paper in 1811 and by 1816 had solved a claim by Pierre
de Fermat on polygonal numbers [7]. Over the next 30 years, Cauchy produced hundreds of papers. In 1846,
he proved Green’s Theorem while proving Cauchy’s Integral Theorem [4]. Although he provided a proof
for this theorem, it was not recognized for many years. Cauchy would still go on to produce a number of
other great works and would leave behind a legacy of being one of the greatest mathematicians of all time.
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3.2 A Proof of Green’s Theorem

Green’s Theorem. Let ∂R ∈ R2 be a closed bounded, piecewise smooth, positively oriented simple curve and let R
be in the interior of ∂R. Let F1(x, y) and F2(x, y) be continuous functions with continuous first partial derivatives
everywhere in R. Then "

R

(
∂F2

∂x
−
∂F1

∂y

)
dxdy =

∮
∂R

(
F1dx + F2dy

)
.

This result is the same as the left side of the Divergence Theorem and therefore they are both equal.

Proof. Proving this theorem for a rectangular area in R2 will in fact prove the theorem for any arbitrary
region, as the nature of the Riemann sums of the double integral ensures this.

Let R = {(x, y)| x1 < x< x2, y1 < y< y2} with its boundary ∂R orientated counterclockwise. Splitting ∂R
into four pieces, one gets ∂R1 which goes from (x1, y1) to (x2, y1), ∂R2 which goes from (x2, y1) to (x2, y2), ∂R3

which goes from (x2, y2) to (x1, y2), and ∂R4 which goes from (x1, y2) to (x1, y1). Now

"
R

∂F2

∂x
dxdy =

y2∫
y1

x2∫
x1

∂F2

∂x
dxdy =

y2∫
y1

(
F2(x2, y) − F2(x1, y)

)
dy =

∫
∂R2

F2(x2, y)dy +

∫
∂R4

F2(x1, y)dy.

The value of y along ∂R1 and ∂R3 is constant, so∫
∂R1

F2(x, y)dy =

∫
∂R3

F2(x, y)dy = 0,

so∫
∂R2

F2(x2, y)dy +

∫
∂R4

F2(x1, y)dy =

∫
∂R1

F2(x, y)dy +

∫
∂R2

F2(x2, y)dy +

∫
∂R3

F2(x, y)dy +

∫
∂R4

F2(x1, y)dy =

∮
∂R

F2dy.

In a similar fashion, it can be seen that "
R

∂F1

∂y
dxdy = −

∮
∂R

F1dx.

Thus, "
R

(
∂F2

∂x
−
∂F1

∂y

)
dxdy =

∮
∂R

(
F1dx + F2dy

)
.

�

3.3 An example of Green’s Theorem

Example 2. Given the vector-valued function F = [x+ y2, x2
−y2] and where the curve is a counterclockwise boundary

defined as 1 ≤ y ≤ 2 − x2, show both sides of Green’s Theorem [3].
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1 ≤ y ≤ 2 − x2 depicts the region bounded by y = 1 and y = 2 − x2.
The points of intersection are x = ±1.

∂F2

∂x
= 2x

∂F1

∂y
= 2y

"
R

(
∂F2

∂x
-
∂F1

∂y
)dxdy =

1∫
−1

2−x2∫
1

(2x-2y)dydx =
−56
15

Solving for the right side of Green’s Theorem using the definition of a vector line integral and parametrizing
the curves we have:

C1 : r1(t) = [t, 1]

r′1(t) = [1, 0]

C2 : r2(t) = [t, 2 − t2]

r′2(t) = [1 − 2t]

C = C1 + C2

∮
C

F · dr =

b∫
a

F(r(t)) · r’(t)dt

∫
C1

F · dr +

∫
C2

F · dr =

b∫
a

F(r1(t)) · r’1(t)dt +

a∫
b

F(r’2(t)) · r’2(t)dt

=

1∫
−1

[t2 + 1, t2-1] · [1, 0]dt +

−1∫
1

[t2 + (2-t2)2, t2-(2-t2)2] · [1, -2t]dt =
−56
16

This result is the same as the left side of Green’s Theorem and therefore they are both equal.

4 Stokes’ Theorem

4.1 History of Stokes’ Theorem

George Green not only discovered Green’s Theorem, but also stated what would be known as Stokes’
Theorem. As mentioned earlier, William Thomson rediscovered the importance of Green’s work, and he
also found that it contained Stokes’ Theorem [9]. Thomson, also known as Lord Kelvin, was born in 1824
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and was a child prodigy [13]. At the age of ten he attended Glasgow University and in 1841 attended the
University of Cambridge [13]. It is at Cambridge that Kelvin came across Green’s work. In 1846, Kelvin
became a professor at Cambridge and collaborated with a man named George Gabriel Stokes [13]. Kelvin
and Stokes began sharing their thoughts and ideas including the work of Green. Kelvin continued in the
direction of physics and engineering, making significant progress in the theories of heat, electricity, and
magnetism. The units on the absolute temperature scale are named after Kelvin [13].

Stokes was born on August 13, 1819, in Skreen, Ireland [14]. Stokes’ father was a priest, as became all three
of his brothers [14]. At the age of 16, he attended Bristol College in England, and then attended Cambridge
University [14]. Upon graduating he received a fellowship from Pembroke College [14]. Stokes collaborated
with Kelvin and together they became interested in the work of Green. In 1854, Stokes decided to put the
theorem as a problem on one of his exams [2]. It is unclear whether the theorem was ever proved by one of
his students, but the first known written proof was by Hermann Hankel in 1861 [4]. Stokes fell in love with
a woman named Mary Susanna Robinson, and his interest in mathematics steadily decreased [14]. Stokes
eventually was drawn back to mathematics and became president of the Royal Society in 1885 [14]. As
O’Connor and Robertson stated, ”Stokes received the Copley medal from the Royal Society in 1893 and he
was given the highest possible honour by his College when he served as Master of Pembroke College” [14].
Stokes died in 1903 in Cambridge, England [14].

Hankel was born February 14, 1839, in Halle, Germany [10]. His father was a professor of physics at the
University Leipzig and enrolled Hankel at the Nicolai Gymnasium [10]. In 1857, Hankel was accepted
into the University of Leipzig [10]. He studied mathematics under August Möbius and physics under
his father [10]. He then studied at the University of Göttingen where he studied under Georg Friedrich
Bernhard Riemann [10]. In 1861, Hankel proved Stokes’ Theorem “in a treatise on the motion of fluids”
[1]. Hankel received his doctorate in 1862 and began teaching at Leipzig in 1863 [10]. He then moved to
teach at Tübingen in 1869 [10]. He would continue on to write several papers of great importance, but only
few would be noticed because he was consistently making errors in them [10]. He would eventually pass
away near Tübingen, Germany in 1873 [10]. Although Hankel did not live as long as many other famous
mathematicians, he would still be the first to provide a valid proof of Stokes’ Theorem.

4.2 A Proof of Stokes’ Theorem

Stokes’ Theorem. Let S be a smooth piecewise oriented surface with its boundary in R3, and let its boundary, ∂S,
be a simple closed piecewise smooth curve. Let F be a continuous vector-valued function with continuous first partial
derivatives in the space containing S. Then"

S

(curl F) · ndA =

∮
∂S

F · dr,

where r : R2
→ R3 is a parametrization of S in some region T in the plane.
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Proof. Taking the line integral, ∮
∂S

F · dr,

and breaking it into its components,∮
∂S

F · dr =

∮
∂T

F ·
∂r
∂x

dx +

∮
∂T

F ·
∂r
∂y

dy.

Defining D = (D1,D2) =

(
F ·

∂r
∂x
,F ·

∂r
∂y

)
, then substituting into the line integral

∮
∂S

F · dr =

∮
∂T

D1dx +

∮
∂T

D2dy =

∮
∂T

D · ds.

Now, "
S

(curl F) · ndA =

"
T

(curl F) ·
(
∂r
∂x
×
∂r
∂y

)
dxdy =

"
T

(
∂D2

∂x
−
∂D1

∂y

)
dxdy.

Applying Green’s Theorem, "
T

(
∂D2

∂x
−
∂D1

∂y

)
dxdy =

∮
∂T

D · ds,

so "
S

(curl F) · ndA =

∮
∂S

F · dr.

�

4.3 An Example of Stokes’ Theorem

Example 3. Given the vector-valued function F = [z2, x2, y2] and a surface defined as z2 = x2 + y2 where y > 0, and
0 ≤ z ≤ 2, show both sides of Stokes’ Theorem [3].

Taking the cross product

∇ × F = [2y, 2z, 2x]

Parametrizing the surface

r(u, v) = [v cos u, v sin u, v]

Calculating the normal vector

n =
∂r
∂u
×
∂r
∂v

= [−v cos u, v sin u, v]
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Using the left side of Stokes’ Theorem

"
S

(∇ × F) · ndA =

2∫
0

π∫
0

[2v sin u, 2v, 2v cos u] · [-v cos u,v sin u,v]dudv =
-32
3

Solving for the right side of Stokes’ Theorem using the definition of a vector line integral∮
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr +

∫
C3

F · dr

Parametrizing the three curves

C1 : r1(t) = [t, 0, t]

r′1(t) = [1, 0, 1]

C2 : r2(t) = [2 cos t, 2 sin t, 2]

r′2(t) = [2 cos t, 2 sin t, 2]

C3 : r3(t) = [t, 0,−t]

r′3(t) = [1, 0,−1]

Substitute and solve ∮
C

F · dr =
8
3
− 16 +

8
3

=
−32

3

This result is the same as the left side of Stokes’ Theorem and therefore they are both equal.

5 Applications

There are many far reaching applications that these proofs have contributed to. Many of these applications
involve physics and engineering. These equations include: Ampere’s Law, Gauss’ Law, Gauss’ Law for
Gravity, Gauss’ Law for Magnetism, Heat Flow Equation, and the Maxwell-Faraday Equation of Induction
[5]. The equations for these can be seen here.

Ampere’s Law. ∮
∂S

B · dl = µ0I + µ0ε0

"
S

∂E
∂t
· dA

Gauss’s Law. 	
∂V

E · dA =
Q
ε0
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Gauss’s Law for Gravity. 	
∂V

g · dA = −4πGM

Gauss’s Law for Magnetism. 	
∂V

B · dA = 0

Heat Flow. "
S

V · ndA = −k
$

T

∇
2Udxdydz

Maxwell-Faraday Equation of Induction.∮
∂S

E · dl = −

"
S

∂B
∂t
· dA

6 Epilogue

In the 17th century, Isaac Newton and Gottfried Wilhelm Leibniz helped lead mathematics to the discovery
of calculus. Because of their discoveries, mathematics has been changed forever. Also, because of the
development of culture at this time, the scientific community became more open to sharing ideas. This
increase of interaction between many mathematicians lead to the development of countless discoveries.
The combination of the discovery of calculus and increased communication led to a greater number of
developments than ever before. It can be seen that these theorems were established because of many
intelligent mathematicians. Only the most influential mathematicians relating to these theorems have been
named, but there are many more who have not. Lagrange was the first to be on the hunt for a proof
of the Divergence Theorem, and although he was unable to prove it, he began a journey that would not
be completed for many years. Gauss was the next to take the mantle and made great advances in both
mathematics and physics. Ostrogradsky was the first to give a formal proof on the theorem, but it would
not have been possible without those who went before him. Green’s Theorem became the next big challenge
to the area we now know as applied mathematics. Green, whom the theorem is named after, was the
first to propose the theorem, but his work would have been forgotten without Thomson. However, it
was Cauchy who actually proved the theorem while involved with his own self-titled Cauchy’s Integral
Theorem. Applied mathematics then took a much more all-purpose approach by discovering the general
case which became known as Stokes’ Theorem. It was Green who first proposed the theorem, and Thomson
who realized the vast importance a theorem of this power could have. Thomson then made this theorem
well known through communication with others such as Stokes. Stokes used the theorem as a problem on
one of his exams and thus the theorem became known as Stokes’ Theorem. Several years later, a gentleman
named Hankel proved the theorem, and applied mathematics now contained a great amount of importance
and could be used to solve many problems in physics, engineering, and mathematics. These revolutionary
theorems are all the outcomes of several different intelligent mathematicians communicating with each other
and building on each other’s work. None of these theorems were discovered and proven by a single man
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at a point in time, but rather several men over many years. These theorems have had vast influence in
the areas of science and mathematics and so have the great minds that contributed to them. Some of these
applications involve electricity, magnetism, gravity, and even heat flow. Because of these theorems, we now
have explanations and solutions for problems that were only imagined before. These theorems are very well
known, but the history and formation of these theorems are often forgotten. These mathematicians are often
known as some of the greatest minds in history, but their impact in the world of applied mathematics is often
neglected. These men deserve much more respect than they are normally given. The various contributors
that have worked on these theorems have achieved a level of greatness that most will only have the privilege
to marvel at. Because of these great developments, our knowledge in mathematics, physics, engineering,
and technology will continue to improve.

14



References

[1]Hans Niels Jahnke. (2000). A History of Analysis. (Vol. 24). Providence, Rhode Island: Spektrum
Akademischer Verlag. Retrieved from http://books.google.com
[2]Victor J. Katz. (1979, May). The History of Stokes’ Theorem. Retrieved April 12, 2012, from
http://www.ingelec.uns.edu.ar/asnl/Materiales/Cap03Extras/Stokes-Katz.pdf

[3]Erwin Kreyszig. (2011). Advanced Engineering Mathematics. (10 ed.). Jefferson City, MO: RR
Donelley & Sons Company.

[4]”Cauchy, Augustin-Louis.” Complete Dictionary of Scientific Biography. 2008. Retrieved April 12,
2012 from Encyclopedia.com: http://www.encyclopedia.com/doc/1G2-2830900822.html

[5]Michelle Neeley. (2008, October 29). Exploring Stokes’ Theorem. Retrieved from
http://sces.phys.utk.edu/ moreo/mm08/neeley.pdf

[6]Nykamp , D. (n.d.). Math insight. Retrieved April 12, 2012, from
http://mathinsight.org/divergence theorem idea

[7]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Caucy.html

[8]J J O’Connor and E F Robertson. (1999). Retrieved April 12, 2012, from http://www-history.mcs.st-
and.ac.uk/Biographies/Gauss.html

[9]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Green.html

[10]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Hankel.html

[11]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Lagrange.html

[12]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Ostrogradski.html

[13]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Thomson.html

[14]J J O’Connor and E F Robertson. (1999). History. Retrieved April 12, 2012, from http://www-
history.mcs.st-and.ac.uk/Biographies/Stokes.html

15



[15]Spencer, R. (1999, April 13). History. Test Page for Apache Installation. Retrieved April 12,
2012, from http://maxwell.byu.edu/ spencerr/phy

16


