FUNCTIONS OF A
COMPLEX VARIABLE

1. INTRODUCTION

In Chapter 2 we discussed plotting complex ¥
numbers z =ux + 4y in the complex plane z=x+iy
(see Tigure 1.1) and finding values of the =gt
elementary functions of 2z such as roots, r 5
trigonometric functions, logarithms, etc. Now
we want to discuss the calculus of functions ' «
of z, differentiation, integration, power series,
etc. As you know from such topics as differ-
ential equations, Fourier series and integrals,
mechanics, electricity, etc., it is often very convenient to use complex expressions. The
basic facts and theorems about functions of a complex variable not only simplify many
calculations but often lead to a better understanding of a problem and consequently to a
more efficient method of solution. We are going to state some of the basic definitions
and theorems of the subject (omitting the longer proofs), and show some of their uses.

As we saw in Chapter 2, the value of a function of z for a given z is a complex
number. Consider a simple function of z, namely f(z) = z2. We may write

FIGURE 1.1

[(z) =2 = (x +iy)* = 2 — y* + iy = u(x, y) + iv(x, y),

where u(x, y) = ¥* — 3% and o(x, y) = 2xy. In Chapter 2, we observed that a complex
number z = x + iy is equivalent to a pair of real numbers x, y. Here we may note that
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a function of z is equivalent to a pair of real functions, u(x, y) and »(x, y), of the real
variables x and y. In general, we write

@) @ fEt =) e

where it is understood that # and v are real functions of the real variables x and y.

Recall that functions are customarily single-valued, that is, [(z) has just one (complex)
value for each z. Does this mean that we cannot define a function by a formula such as
In z or arc tan z? By Chapter 2, we have

Inz=1In|z|+ {0+ 2umn),

where tan 0 = y/x. For each z, In 2z has an infinite set of values. But if 0 is allowed a
range of only 2x, then In z has one value for each z and this single-valued function is
called a branch of In z. Thus in using formulas such as \/,;, In z, arc tan z, to define
functions, we always discuss a single branch at a time so that we have a single-valued
function. (As a matter of terminology, however, you should know that the whole
collection of branches is often called a “ multiple-valued function.”)

PROBLEMS, SECTION 1

Find the real and imaginary parts «(x, y) and v(x, y) of the following functions.

1. 22 2. =z 3. z
4. |z| 5. Rez. 6. ¢
1
cosh 8.) si 9. -
@ z C) sin 2z P
22+ 3 2z — 1 2
10. 11. 12,
z+2 . iz+2 . 241
13. In|z| 14. 2%z 15. ¢
AR .2 _ =2 =
(16) 22—z 17. cos z 18. /2
Inz (Use0 <0 <2n) 20 (1+2)22+(i—1)z+3

¢ (Careful; cos z and sin z are not u and v.)

(B EX

2. ANALYTIC FUNCTIONS

Definition The derivative of f(z) is defined (just as for a function of a real variable)
by the equation

= li

Az—0 Az

A
(2.1) f()—di tim L
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where
Af = f(z + Az) — f(a),
Az = Ax + iAy.

‘Definition: A functlon o (z) 18 amiym {or regular or kolomarphw or manogemc) ina
:regmn* of the complex plane if it has a (unigue) der;vatwe at every point of the

| region, The statement “f(z} 1S ana[ytlc at a point z = a’ means that f(z) has a
derrvatnve at every pomt msujc some. small circle about z = a.

Let us consider what it means for f(z) to have a derivative. First think about a
function f(x) of a real variable x; it is possible for the limit of Af/Ax to have two
values at a point xo, as shown in Figure 2.1-—one value when we approach x, from the
left and a different value when we approach x, from the right. When we say that f(x)
has a derivative at x = xy, we mean that these two values are equal. However, for a
function f(z) of a complex variable 2, there are an infinite number of ways we can
approach a point z,; a few ways are.shown in Figure 2.2. When we say that f(z) has a
derivative at 2 = 25, we mean that f’(z) [as defined by (2.1)] has the same value no
matter how we approach z,. This is an amazingly stringent requirement and we might
well wonder whether there are any analytic functions, On the other hand, it is hard to
imagine making any progress in calculus unless we can find derivatives!

f(x) &

|
J
I
l
|
I

X0

FIGURE 2.1 FIGURE 2.2

Let us immediately reassure ourselves that there are analytic functions by using the
definition (2.1) to find the derivatives of some simple functions. For example, let us
show that (4/dz)(z%) = 2z. By (2.1) we have

a . (z+ Az)? —32? .22 4 22 Az + (Az)? — 22
—(2°)= lim — = lim
dz Az—0 Az Az—=0 Az

Il

lim (2z + Az) = 2z.

Az—=0

We see that the result is independent of kow Az tends to zero; thus z? is an analytic
function. By the same method it follows that (d/dz)(z") = n2" "' if n is a positive integer
(Problem 30).

* Isolated points and curves are not regions; a region must be two-dimensional.

T
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Now what we have just been doing is nothing but the familiar A-process! We
observe that the definition (2.1) of a derivative is of exactly the same form as the
corresponding definition for a function of a real variable. Because of this similarity,
many familiar formulas can be proved by the same methods used in the real case, as we
have just discovered in differentiating 2%. You can easily show (Problems 25 to 28) that
derivatives of sums, products, and quotients follow the familiar rules and that the chain
rule holds [if /= f(g) and g = g(z), then 4f /dz = (df /dg)(dg/dz)]. Then derivatives. of
rational functions of z follow the familiar real-variable formulas. If we assume the
definitions and theorems of Chapters 1 and 2, we can see that the derivatives of the
other elementary functions also follow the familiar formulas; for example,
(d/dz)(sin z) = cos z, etc. (Problems 29 to 33).

Now you may be wondering what is new here since all our results so far seem to be
just the same as for functions of a real variable. [The reason for this is that we have
been discussing only functions f(z) that have derivatives.] In Figures 2.1 and 2.2 we
pointed out the essential difference between finding (d/dx) f(x) and finding (d/dz) f (=),
namely that there are an infinite number of ways we can approach z, in Figure 2.2. To
see an example of this let us try to find (d/dz)(|z|?). (Note that |x|*> = 22, and its
derivative is 2x.) If | z|* has a derivative, it is given by (2.1), that is, by

A a4 Az —|z)?
lim —= lim —M =
Az—0 B8 Azag Az

The numerator of this fraction is always real (because absolute values are real—recall
|z| = ./x* + y* = r). Consider the denominator Az = Ax + iAy. As we approach z, in
Figure 2.2 (that is, let Az— 0), Az has different values depending on our method of
approach. For example, if we come in along a horizontal line, then Ay =0 and
Az = Ax; along a vertical line Ax =0 so Az = iAy, and along other directions Az is
some complex number; in general, Az is neither real nor pure imaginary. Since the
numerator of Af//Az is real and the denominator may be real or imaginary (in general,
complex), we see that lim,,o Af/Az has different values for different directions of
approach to z,, that is, | 2|? is not analytic.

Now we have seen examples of both analytic and nonanalytic functions, but we still
do not know how to tell whether a function has a derivative [except to appeal to (2.1)].
The following theorems answer this question.

Theorem I (which we shall prove). If £(z) = u(x, ) + io(x, y) is analytic in a
region, then in that region ' . o e

u_o
j o 3y
2.2
22) o
ox oy

These equations are called the Cauchy-Riemann conditions.
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Proof.  Remembering that = f(z), where z = x + 4y, we find by the rules of partial
differentiation (see Problem 28 and also Chapter 4)

o _dfo=_df
) ox  dz dx dz

. U _&ox_df

dy dzdy dz
Since f'= u(x, y) + iv(x, y) by (1.1), we also have

af ou  Ov o ou | Ov

2.4 b R S L2242
@4 Ox 6x+16x iad ady dy z@y

Notice that if f has a derivative with respect to z, then it also has partial derivatives
with respect to x and y by (2.3). Since a complex function has a derivative with respect
to a real variable if and only if its real and imaginary parts do [see (1.1)], then by (2.4)
u and v also have partial derivatives with respect to x and . Combining (2.3) and (2.4)
we have

af 0 0 J
ffu+.v

dz  0Ox Ox ‘5

i 1ar 1 (31; ,3’0) v | du

=i ~% B

and

— gt
ay
Since we assumed that df/dz exists and is unique (this is what analytic means), these
two expressions for df /dz must be equal. Taking real and imaginary parts, we get the
Cauchy-Riemann equations (2.2).

Theorem Il (which we state without proof). If u(x, y) and v(x, y) and their partial
derivatives with respect to x and y are continuous and satisfy the Cauchy-Riemann
conditions in a region, then f(z) is analytic at all points inside the region (not necess-
arily on the boundary).

Although we shall not prove this (for proof see texts on complex variable) we can
make it plausible by showing that it is true when we approach z;, along any straight
line. We shall calculate df/dz assuming that we approach 2o along a straight line of
slope m, and we shall show that df/dz does not depend on m if 4 and v satisfy (2.2).
The equation of the straight line of slope 7 through the point zg = xq + iy, is

Y — Yo =mlx — x)

and along this line we have dy/dx = m. Then we find

u u dv v
—dx+—dy+i| —de +— 4
4 dutido Ox x+6yy+1(6xdx+6y y)
dz_dx-’rz'dy_ dx +idy
G a0
o ay " "\ ax dy
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Using the Cauchy-Riemann equations (2.2), we get

du v (8‘0 Bu)
—m=—— Pk ¢ +—m

Ef__ax 6x 0 Ox
dz 1+ im
Ou . . Ov ;
a(l-{--tm)Jraax(lJr:m)_a——'-‘@
1+ im “or ' ox

Thus df /dz has the same value when calculated for approach -along any straight line.
The theorem states that it also has the same value for approach along any curve.

Some definitions:

A regular point of f(z) is a poeint at which f(z) is analytic.

A singular point or singularity of f (2) is a point at which f(z) is not analytic. It is
called an isolated singular point if f(z) is analyr_lc everywhere else inside some small
circle about the singular pomt

Theorem III (whlch we state Wlthout proof) If f(z) is analytic in a region (R in
Figure 2.3), then it has dcrwatlves of all orders at points inside the region and can
be expanded in a Taylor series about any point 2, inside the region. The power
series converges inside the c1rcIe about zq that extends to the nearest singular point

(C in Figure 2.3).

P Singular
point

FIGURE 2.3

Notice again what a strong condition it is on f(2) to say that it has a derivative, It is
quite possible for a function of a real variable f(x) to have a first derivative but not
higher derivatives. But if f(z) has a first derivative with respect to z, then it has
derivatives of all orders.

‘This theorem also explains a fact about power series which may have puzzled you.
The function f(x) = 1/(1 + ¥*) does not have anything peculiar about its behavior at
x = 11, Yet if we expand it in a power series

1
14 %2

(2.5) =l—2*+a*—af4-
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we see that the series converges only for |x| < 1. We can see why this happens if we
consider instead

=1—z22+z*—2% 4

(2.6) &) =1

When 2z = 414, f(z) and its derivatives become infinite; that is,
f(z) is not analytic in any region containing z = +4i. The point
2o of the theorem is the origin and the circle C (Figure 2.4) of
convergence of the series extends to the nearest singular points
+i. The series converges inside C. Since a power series in z
always converges inside its circle of convergence and diverges
outside (Chapter 2, Problem 6.14), we see that (2.5) [which is
(2.6) for y = 0] can converge only for |x| < 1.

A function ¢(x, y) which satisfies Laplace’s equation, namely,
Vi = 0*¢/ox> + 0*¢/3y* =0, is called a harmonic function. A great many physical
problems lead to-Laplace’s equation, and consequently we are very much interested in
finding solutions of it. (See Section 10 and Chapter 13.) The following theorem should
then give you a clue as to one reason why the theory of functions of a complex variable
is important in applications.

FIGURE 2.4

Theorem IV. Part | (to be proved in Problem 44). If f(2) = u + sv is analytic in
a region, then u and © satisfy Laplace’s equation in the region (that is, # and v are
harmonic functions).
Part 2 (which we state without proof) Any function u (or v) satisfying Laplace’s
equation in a simply-connected region, is the real or imaginary part of an analytic
functmnf(z) o

Thus we can find solutions of Laplace’s equation simply by taking the real or
imaginary parts of an analytic function of z. It is also often possible, starting with a
simple function which satisfies Laplace’s equation, to find the explicit function /(z) of
which it is, say, the real part.

Example. Consider the function u(x, y) = ¥* — y2. We find that

Pu  0%u

V2u=ﬁ+§=2—2=0,

that is, u satisfies Laplace’s equation (or » is a harmonic function). Let us find the

function o(x, y) such that # + v is an analytic function of z. By the Cauchy-Riemann
equations

Integrating partially with respect to y, we get

u(x, y) = 2xy + g(x),
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where g(x) is a function of x to be found. Differentiating partially with respect to x and
again using the Cauchy-Riemann equations, we have

%=2y+g’(x) = g—;—Zy.
Thus we find

£gx) =0, or g = const.
Then

f(z) = u + v =x* — y* + 2ixy + const. = z% + const.

The pair of functions u, v are called conjugate harmonic functions. (Also see Problem 64.)

PROBLEMS, SECTION 2

1 to 21. Use the Cauchy-Riemann conditions to find out whether the functions in Problems 1.1
to 1.21 are analytic. Similarly, find out whether the following functions are analytic.

2\ y+ir @3) i/ () j;:__T’;

x? +y2

Using the definition (2.1) of (d/dz)f(z), show that the following familiar formulas hold. Hint:
Use the same methods as for functions of a real variable.

d d d d 4 daf
5. L@+ BN =AT+BE . (26) L e =10 Fad Chet

d (f&)\_ef —fg a _Y % ;
27. = (ﬁ) s —gz—_, 2(z) # 0. 28. dzf[g(z)] =i di (See hint below.)

Problem 28 is the chain rule for the derivative of a function of a function. Hint: Assume
that df/dg and dg/dz exist, and write equations like (3.5) of Chapter 4 for Af and Ag;
substitute Ag into Af, divide by Az, and take limits.

d
@ —(.Z" =nz"71.
dz

d 1 : Az\,

I, —lhz=-, z# 0. Hint: Expand In[ 1 + — ] in series.
dz 2 2

@ Using the definition of ¢ by its power series [(8.1) of Chapter 2], and the theorem
(Chapters 1 and 2) that power series may be differentiated term by term (within the circle
of convergence), and the result of Problem 30, show that (d/dz)(¢?) = ¢*.

d
2. — () =3

33, Using the definitions of sin z and cos z [Chapter 2, equation (11.4)], find their derivatives.
Then using Problem 27, find (d/dz)(cat z), z # nm.

Using series you know from Chapter 1, write the power series (about the origin) of the following
functions. Use Theorem III to find the circle of convergence of each series. What you are
looking for is the point (anywhere in the complex plane) nearest the origin, at which the function
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does not have a derivative. Then the circle of convergence has center at the origin and extends to
that point. The series converges inside the circle.

3. In(l —2) 35. cosz 36. 1+ 22
1 z
37. tanh z 38 — 39, —
2+ 2z z°+9
40. (1—2)! 41, g2 42. sinh z

43. In Chapter 12, equations (5.1) and (5.2), we expanded the function D(x, £) in a series of
powers of k. Use Theorem III (see instructions for Problems 34 to 42 above) to show that
the series for ®(x, /) converges for | 4| < 1 and —1 < x < 1. Here 4 is the variable and x is
a parameter; you should find the (complex) value of 4 which makes @ infinite, and show
that the absolute value of this complex number is 1 (independent of x when x? < 1). This
proves that the series for real 4 converges for | 2| < 1.

44. Prove Theorem IV, Part 1. Hint: Recall the equality of the second cross partial derivatives;
see Chapter 4;-end of Section 1.

Let f(z) = u + iv be an analytic function, and let F be the vector F = vi + uj. Show that

the equations div F = 0 and curl F = 0 are equivalent to the Cauchy-Riemann equations.

46. Find the Cauchy-Riemann equations in polar coordinates.
Hint: z = re®, f(z) = u(r, 0) + iv(r, 0). Follow the method of equations (2.3) and (2.4).

47. Using your results in Problem 46 and the method of Problem 44, show that » and v satisfy
Laplace’s equation in polar coordinates (see Chapter 10, Section 9) if f(z) = u + iv is
analytic.

Using polar coordinates (Problem 46), find out whether the following functions satisfy the
Cauchy-Riemann equations. )

48. z 49. |z] 50. Inz

51. 2" 52. |z|? 53. | =z|Y2.102

Show that the following functions are harmonic, that is, that they satisfy Laplace’s equation, and

find for each a function f'(z) of which the given function is the real part. Show that the function
o(x, ) which you find also satisfies Laplace’s equation.

54, y 55, 3a%y —3° 2y 57. x4y

58. cosh y cos x 59. e“cosy 60. In (x* +y?)
x i ¥y
6l. ——— @ et 63, ———
x? + y? - (1—x)*+5?

64. It can be shown that, if #(x, y) is a harmonic function which is defined ar Zg = &g + Vg,
then an analytic function of which u(x, y) is the real part is given by

z2+2; 2—2Z

27 2i
[See Struble, Quart. Appl. Math., 37 (1979), 79-81.] Use this formula to find f(z) in
Problems 54 to 63. Hint : If u(0, 0) is defined, take z, = 0.

f(z) = Zu( 0) + const.
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3. CONTOUR INTEGRALS

Theorem V. Cauchy’s theorem (which we shall prove). Let C be a simple®
closed curve with a continuously turning tangent except possibly at a finite number
of points (that is, we allow a finite number of corners, but o_therwisq-- the curve must
be “smooth ). If /(z) is analytic on and inside C, then

(3.1) 3€ f(z) dz =

around C

(This is a line integral as in vector analysis; it is called a contour integral in the theory
of complex variables.)

Proof.

(3.2) é;f(z) dz = fﬁ(u + w)(dx + 1 dy)
c [&
= 9g(u dx —vdy)+1 §(v dx + u dy).
c c

Green’s theorem in the plane (see Chapter 6, Section 9) says that if P(x, y) and Q(x, y)
and their partal derivatives are continuous in a simply-connected region R, then

(3.3) SEP dr + 0 dy = ” (a—Q - 6—5) dx dy,

area
inside C

where C is a simple closed curve in R. The curve C is traversed in a direction so that
the area inclosed is always to the left. The area integral is over the area inside C, with
C and the area entirely in R. Applying (3.3) to the first integral in (3.2), we get

(3.4) %(n dr —vdy) = fj (————) dx dy.

area
inside C

Since f(z) is analytic, # and v and their derivatives are continuous; by the Cauchy-
Riemann equations the integrand on the right of (3.4) is zero at every point of the area
of integration, so the integral is equal to zero. In the same way the second integral in
(3.2) is zero; thus (3.1) is proved.

* A simple curve is one which does not cross itself.
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Theorem VI. Cauchy’s integral formula (which we shall prove). If /(2) is analytic
on and inside a simple closed curve C, the value of f(z) at a point z = 2 inside C is
given by the following contour integral along C:

f(a)=%§;f£z)d
T Z a

Proof. Let a be a fixed point inside the simple closed curve C and consider the
function

(.9 s =T,

z—a

where f{z) is analytic on and inside C. T.et C' be a small ¥
circle (inside C) with center at @ and radius p. Make a cut
between C and C" along AB (Figure 3.1); two cuts are
shown to make the picture clear, but later we shall make
them coincide. We are now going to integrate along the
path shown in Figure 3.1 (in the direction shown by the
arrows) from A, around C, to B, around C’, and back to

A. Notice that the area between the curves C and C' is
always to the left of the path of integration and is inclosed

by it. In this area between C and C’, the function ¢(z) is
analytic; we have cut out a small disk about the point FIGURE 3.1

z =a at which ¢(z) is not analytic. Cauchy’s theorem _

then applies to the integral along the combined path consisting of C counterclockwise,
C’ clockwise, and the two cuts. The two integrals, in opposite directions along the cuts,
cancel when the cuts are made to coincide. Thus we have

§ (z) dz + § B(z) dz =0 or
C counter- C’ clockwise

(36) clockwise

ﬂg P(z) dz = ﬂg P(2) dz where both are counterclockwise.
c c

Along the circle C', z = a + pe®, dz = pie'® 40, and (3.6) becomes

(3.7) Eﬁqﬁ(z) dz = fﬁ ¢(z) dz = J@ d
C 'y o 8 — a
2n 2n
f( ) pie® dO = f(z)i do.
o pe”

Since our calculation is valid for any (sufficiently small) value of p, we shall let p—0
(that is, z-—a) to simplify the formula. Because f(z) is continuous at z = & (it is
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analytic inside (), lim,_,, /(2) =/(a). Then (3.7) becomes

8 P(z) dz = FAC dz= an(z)i do = 2ﬁf(a)i d0 = 2mnif (a)
5 c ) c?—4a 0 0

or

a inside C.

.::(3_9‘);; i

This ts Cﬁhchy‘?s.iﬁfégréf'fxor"m»u'lg. -Notc-pareﬁllyz that the point # is inside .C 1517 a
were outside C, Ihén;qi(;z)“ would be analytic everywhere inside C arl_d thf: 1ptegral_ -
would be zero by Caqqhy’g ‘theorem. A useful way to look at (3.9) is this It -4thg
values of f(z) are given on the boundary of a region (cur\.ze ‘C),V th_el‘l (3.9) gives th,e;
value of f(z) at any point 4 inside C. With this interpretation you will find C?uchy(si.:
integral formula written with a replaced by z, and z replaced by some dlffer‘er{t
dummy int@gritibh Vyé'ria];lc, say w: ’ : :
f(z)~2m C-—w —’__z’:dfn’_"f z inside C.

i &

(D) L

S

For some important uses of this theorem, see Problems 11.3 and 11.36 to 11.38.

PROBLEMS, SECTION 3

Evaluate the following line integrals in the complex plane by direct integration, that is, as in
Chapter 6, Section 8, not using theorems from this chapter. (If you see that a theorem applies,

use it to check your result.)

1. [}*%z dz along a straight line parallel to the x axis.

2, fé“ (2% — 2) dz
(a) along the line y = x; 14
(b) along the indicated broken line.

@ ¢ 2* dz along the indicated paths:

-1+

1+ m

-1 0 1 -1 0 1
(a) (b)

4. [ dz/(1 — 2%) along the whole positive imaginary axis, that is, the y axis; this is frequently
written as _ﬁ{" dzf(1 — z2),

i 3 ; P
5 _[ ¢~* dz along the positive part of the line y = 7; this is frequently written as [f “ e % dz.
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6. ﬁ z dz along the indicated paths: ; : _
1 1
(a) (b)

d:
@ jg_% along the line y = x from 0 to 0.

2 +ico @+ 2i
; d
8. f e gz 9. f .. N —
2n 1+2i (2 —20)

2+im
10. j ze' dz
2

11, Evaluate §. (2 — 3) dz where C is the indicated closed curve along the first 2
quadrant part of the circle |z| = 2, and the indicated parts of the x and y 4
axes. Hint: Don’t try to use Cauchy’s theorem! (Why not? Further hint :
See Problem 2.3.) — 2
12, (5% |z? dz along the indicated paths: 1+ 2 2ifsol + 2
I S
0 0
(a) (b)

13. In Chapter 6, Section 11, we showed that a necessary condition for [© F - dr to be
independent of the path of integration, that is, for §c F : dr around a simple closed curve C
to be zero, was curl F =0, or in two dimensions, dF,[6x = OF,/dy. By considering (3.2),
show that the corresponding condition for §c /() dz to be zero is that the Cauchy-Riemann
conditions hold.

14. In finding complex Fourier series in Chapter 7, we showed that
2n . i
f e™e T dy = (), n % m.
o
Show this by applying Cauchy’s theorem to
3@;:’"’“1 dz, n>m,
IC

where C is the circle [z| = 1. (Note that although we take # > m to make z"~"m~1 analytic
at z = 0, an identical proof using 2" "~ with » < m completes the proof for all n # m.)

pr 2z
@ If f(z) is analytic on and inside the circle |z| = 1, show that f eF (e) df = 0.
0
16. If f(2) is analytic in the disk |z| < 2, evaluate [3™ e*f () 46.

Use Cauchy’s theorem or integral formula to evaluate the integrals in Problems 17 to 20.

sin 2 dz (a) Cis the circle | 2| =1,
17. where . R
e 2z—1 (b) C is the circle | 2| = 2.

sin 2z dz . )
——— where C is the circle |z]| = 3.
e 6z—m
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&3 dz . - )
19. if C is the square with vertices +1 +i.
cz—In2

cosh z dz . @ |z|=1;
————— if C is the circle
20 iZan—z if C is the ®) |z] = 2.
Differentiate Cauchy’s formula (3.9) or (3.10) to get
1 f () dw . f(z)dz_
SO0 Q- TP m G e

By differentiating # times, obtain

§ n! f(w) dw . 7_?1 f(z) dz
j(n)(z)zﬁi(—w_—z),ﬁ—l or f‘()(a)fzm_ -___(z—a)"“'

Use Problem 21 to evaluate the following integrals.

22 M where C is the circle |z| = 3.
o (62 — m)®

£ is th in Problem 19
—2)4 where C is the square 1 3
c(z—1In

cosh z dz

m where C is the circie |z|'= 2.
c ni—z

24,

4. LAURENT SERIES

. frﬁéore&rv_n. “Laurentist theorem [équa'tiqn (41)} (whxch ‘we shall ,st%_ltc‘ w.ithm_.;tt
pfé.ﬂf). Let C1 and C, be two circles with center at z,. Let f(2) be analytic in thﬁ.u
: region R between the circles. Then f(z) can be expanded in a series of the=f¢).rm"
& 171+ by .
vis 2y (a = 2p)

(1) f()=aq +ay(z — 20) + (e = 20)" + - 4 oo
MAci)iriv.crgc.ﬁf in R, i ‘ N W o
~ Such a series is called a Laurent series. The “b” series in (4.1) is called the
principal part of the Laurent series. ; ’ b i

Example 1. Consider the Laurent series

z zr & (z)"
= ki _+...+ — +...
(4.2) f(z) lJr2+T*+8 3
2 1 1 (—n"
+;+4(;—?+ -+ o + )

Let us see where this series converges. First consider the series of positive powers; by
the ratio test (see Chapters 1 and 2), this series converges for |z/2| < 1, that is, f-or
|z| < 2. Similarly, the series of negative powers converges for |1/z| <1, that is,
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|z| > 1. Then both series converge (and so the Laurent series converges) for |z|
between 1 and 2, that is, in a ring between two circles of radii 1 and 2.

We expect this result in general. The “a” series is a power scries, and a power
series converges inside some circle (say C, in Figure 4.1). The “4” series is a series of
inverse powers of 2, and so converges for | 1/z| < some constant; thus the “5” series
converges outside some circle (say C, in Figure 4.1). Then a Laurent series converges
between two circles (if it converges at all). (Note that the inner circle may be a point
and the outer circle may have infinite radius).

FIGURE 4.1

FIGURE 4.2

The formulas for the coefficients in (4.1) are (Problem 5.2)

I CY T W G VR
(4.3) = 2m'(£ (2 — gyt 1’ by = 2mi 3% (g — )™’

where C is any simple closed curve surrounding z, and lying in R. However, this is not
usually the easiest way to find a Laurent series. Like power series about a point, the
Laurent series (about z,) for a function in a given annular ring (about z,) where the
function is analytic, is unique, and we can find it by any method we choose. (See
examples below.) Warning: If f(z) has several isolated singularities (Figure 4.2), there
are several annular rings, R;, R,, ..., in which f(z) is analytic; then there are several
different Laurent series for f(z), one for each ring. The Laurent series which we
usually want is the one that converges near z,. If you have any doubt about the ring of
convergence of a Laurent series, you can find out by testing the “4” series and the
“&™ series separately,

Example 2. The function from which we obtained (4.2) was

12

(4.4) = i s
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This function has three singular points, at z =0, 2 =2, and z = —1. Thus .thcrcb are
two circles C; and C, about z; =0 in Figure 4.2, and three Laurent series a ozut
2o = 0, one series valid in each of the three regions ‘Rl (0 <l|z| < 1), Rz'(l < |z| < ),
and R; (Jz| > 2). To find these series, we first write f(z) in the following form using

partial fractions (Problem 2):

4 1 & 1
@3) f(z)_z l+z 2-—2z)
Now, for 0 < |z| < 1, we expand each of the fractions in the parenthesis in (4.5) in

powers of z. This gives (Problem 2):
(4.6) f(z) = —3 +92/2 — 1522/4 + 33z%/8 + --- + 6/=z.

This is the Laurent series for f(z) which is valid in the region 0 < |z| < 1. To obtain
the series valid in the region | z| > 2, we write the fractions in (4.5) as

1 1 1 1 1
“D 1+z=;1+1/z’ 2—z z1—2/z

and expand each fraction in powers of 1/z. This gives the Laurent series valid for
|z| > 2 (Problem 2):

(4.8) fz) = —(12/2°)(1 + 1/z + 3/2* + 5/2% + 11/z* + ---).

Finally, to obtain (4.2), we expand the fraction 1/(2 — z) in. powers of z, and the
fraction 1/(1 + z) in powers of 1/z; this gives a Laurent series which converges for
1 < |z| < 2. Thus the Laurent series (4.6), (4.2), and (4.8) all represent f(z) in (4.4),
but in three different regions.

Let zy in Figure 4.2 be cither a regular point or an isolated singular pomlt and
assume that there are no other singular points inside C,. Let f (z) be expanded in ]t]he
Laurent series about z, which converges inside C, (except possibly at z,); we say that
we have expanded f(z) in the Laurent series which converges near z,. Then we have
the following definitions.

Defpitionsito e ofome s o e LT r i
B all he uiare zero, f(z) is analytic at z = zg, and we call zg a regular ij{).:_rm{,
See Problem 4;1'.}. ' oo i e : : o
{ If b, + 0, but all the 0’s after b, are zero, f(z) is said to have a po{e of :afder n at{
2=z, 1fn= 1, we say-that'f(_z) has a simple j)olt?: i e

i :)herel are an infinite number of &’ different from zeto, f(z) has an esmzfml

singularity at z = z,.

The coefficient &, of 1/(z — z) is _(‘:zflled?thé residue of f(z) at z = z,.

Example 3.
5 zz z3+
(a) F=lt+tzt+y+y
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is analytic at z = 0; the residue of efatz=0is 0,
e 1 1
(b) S a3 tSs+t—+—+---

has a pole of order 3 at z = 0; the residue of ¢%/z% at 2 = () is 1/21.

1 1
c 1."Z=1 — i W e
(c) e +z+2!z2+

has an essential singularity ar z = 0; the residue of 2% at g = 0 is 1.

Most of the functions we shall consider will be analytic except for poles—such
functions are called meromorphic functions. If f (2) has a pole at 2= Zg, then
| /(z)]|— o0 as z— % . A three-dimensional graph with | f(z)| plotted vertically over a
horizontal complex plane would look like a tapered pole near z — z5. We can often see

that a function-has a pole and find the order of the pole without finding the Laurent
series.

Example 4.
z+3

(a) 5205 — T T3

2z — 1)z + 1)
has a pole of order 2 at z = 0, a pole of order 3 at z = 1, and a simple pole at z = —1.

sin? g
(b) 1113 has a simple pole at z = 0,
z

To see that these results are correct, consider finding the Laurent series for f(z) =
£(z)/(z — z5)". We write &2) =ay + ay(z — Zg) + +-+; then the Laurent series for f(z)
starts with the term (z — z,) ™" unless ao = 0, that is unless £(z9) = 0. Then the order
of the pole of £(2) is # unless some factors cancel. In Example 4b, the sin z series starts
with 2, so sin? 2 has a factor z?%; thus (sin? z)/z> has a simple pole at z = 0,

PROBLEMS, SECTION 4

1. Show that the sum of a power series which converges in a circle C is an analytic function

inside C. Hint: See Chapter 2, Section 7, and Chapter 1, Section 11, and the definition of
an analytic function.

2. Show that equation (4.4) can be written as (4.5). Then expand each of the fractions in the
parenthesis in (4.5) in powers of 2 and in powers of 1/z [see equation (4.7)] and combine
the series to obtain (4.6), (4.8), and (4.2).

For each of the following functions find the first few terms of each of the Laurent series about
the origin, that is, one series for each annular ring between singular points. Find the residue of
each function at the origin. (Warning : To find the residue, you must use the Laurent series
which converges near the origin.) Hints: See Problem 2. Use partial fractions as in equations
(4.5) and (4.7).-Expand a term’ 1/(z— a) in powers of z to get a series convergent for 2| < a,
and in powers of 1/z to get a series convergent for |z| > a.
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1 1 z—1

I s 5 — =
2z — Dz —2) 2z — Dz — 2)* 23z —2)

1 2—z % 30
231 + 2)? % 1—2z? "+ 2)(e =3B+ 2)

For each of the following functions, say whether the indicated point is regular, an essential
singularity, or a pole, and if a pole of what order it is.

i cos 2
% B, &= ) =5 z=0
& z
2 Wbt S LA
© -1 *7 1’
| ) 5 _
10. (a) m, z=2 (b) tan* 2z, =z =7/2
1 . T
@ —— ==0 C"S(z_x)’ BT
e —=1—z sin z
1. (a) —a z2=10 (b)?‘, z=10
22 —1 cos 2
: _ ——— — z=xf2
(c) @12’ z=1 @(z—n/2)4 z=mnf
2
sin g — =z z-—1 g
12. (a) T, z2=10 @(z2+1)2, Z=1
(c) =ze'?, z=0 (d) I'(z), =z=0 [See Chapter 11, equation (4.1).]

5. THE RESIDUE THEOREM

Tet z, be an isolated singular point of f(z). We are going to find .the value of
§c f(2) dz around a simple closed curve C surrounding 2, but inclosing no other
singularities. Let f(z) be expanded in the Laurent series (4.1) about z = %o thgt con-
verges near z = 2,. By Cauchy’s theorem (V), the integral of the “a” series is zero
since this part is analytic. To evaluate the integrals of the terms in the “#” series in
(4.1), we replace the integrals around C by integrals around a circle C’ \fvith center_ at
zo and radius p as in (3.6), (3.7), and Figure 3.1. Along C’, z = 2, + pe'; calculating
the integral of the 4, term in (4.1), we find

2n - i de
(5.1) #;M:blf P2 omib,.
c (2 — 2g) 0 pe

It is straightforward to show (Problem 1) that the integrals of all the other &, terms are
zero. Then §. f(2) dz = 2mib,, or since b, is called the residue of f(2) at z = z,, we
can say

§ f(z)dz = Zﬁz' - residue of f(z) at the singular point inside C.
51
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Co

FIGURE 5.1

The only term of the Laurent series which has survived the integration process is the
by term; you can.sce the reason for the term “residue.” If there are several isolated
singularities inside C, say at 2, z;, 2,, *-, we draw small circles about each as shown
in Figure 5.1 so that f(z) is analytic'in the region between C and the circles. Then,
introducing cuts as in the proof of Cauchy’s integral formula, we find that the integral
around C counterclockwise, plus the integrals around the circles clockwise, is zero
(since the integrals along the cuts cancel), or the integral along C is the sum of the
integrals around the circles (all counterclockwise). But by (5.1), the integral around each

circle is 27/ times the residue of f(z) at the singular point inside. Thus we have the
residue theorem:

(5.2) f§ /(3) dz = 2mi - sum of the residues of f(z) inside C,
c .

where the integral around C is in the counterclockwise direction.

The residue theorem is very useful in evaluating many definite integrals; we shall

consider this in Section 7. But first, in Section 6, we need to develop some techniques
for finding residues,

PROBLEMS, SECTION 5

L. If Cis a circle of radius p about 2, show that

dz . ;
é;—":?.m if n=1,
o (& — 2)

but for any other integral value of n, positive or negative, the integral is zero. Hint+ Use the
fact that z = 2, + pe®® on C.

2. Verify the formulas (4.3) for the coefficients in a Laurent series. Hint: To get a,, divide
equation (4.1) by (2 — zp)"* ! and use the results of Problem 1 to evaluate the integrals of
the terms of the series. Use a similar method to find b,.

3. Obtain Cauchy’s integral formula (3.9) from the residue theorem (5.2).

v
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6. METHODS OF FINDING RESIDUES

A. Laurent Series If it is easy to write down the Laurent se.rics for f(z) about
z = z, that is valid near z,, then the residue i.s just the coefficient &, .of the ;::rrn
1/(z — zo). Caution: Be sure you have the expansion about z = z,; the series you1 afve
memorized for ¢, sin z, etc., are expansions about z =0 and so can be used only l01-'
finding residues at the origin (see Section 4, Example 3). Here is another cxamg e;
Given f(z) = ¢*/(z — 1), find the residue, R(1), of f(z) at z = 1. We want to expand ¢

in powers of z — 1; we write

z Ll —1)?
4 e e o ¢ o (Z 1Li|
= _z_1|:1+(z 1) + X

= et
z—1

Then the residue is the coefficient of 1/(z — 1), that is,

R(1) =e.

B. Simple Pole If f(z) has a simple pole at z = 2y, we find the residuc by multi-
pl;ing f(z) by (z — zp) and evaluating the result at z = z, (Problem 10).

Example 1. Find R(—%) and R(5) for

zZ

f(z):(2z+ DGE—2)

1

Multiply f(z) by (2 + %) [Caution: not by (2z + 1)] and evaluate the result at z = —3.

We find
P Z
(z+32)f(x)=(z+2) = +1D5—2) 25-2)
1
Y= =L
R =353~ 7%
Similarly,

z zZ

(3—5)f(z):(z_5)(zz+1)(5—z)=72z+1’

R(5) = —1

Example 2. Find R(0) for /(z) = (cos z)/z.
Since zf(z) = cos z, we have

R(0) = (cos 2),—o =cos 0 =1,
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To use this method, we may in some problems- have to evaluate an indeterminate
form, so in general we write

e R(zp) = lim (z— %9) f(z) when 2, is a simple pole.

iz zg

Example 3. Find the residue of cot z at 2 — 0.
By (6.1),

. 2CO0S z )
R(0) = lim — =cos 0.+ lim —
z»g SN Z 2z SIN 2

=1-1=1.

If, as often happens, f(z) tan be written as £(z)/h(z), where g(z} is analytic and not
zero at 2, and /A(z,) = 0, then (6.1) becomes

o (23— z)e(e) 2=z
Ko =m iy &) lim S

by L’Hépital’s rule or the definition of ii’(z) (Problem 11).
Thus we have-

B —— 4(zo)
2z H(2) K (20)

e e e st f(2) = g(z)/h(z), and
(6.2), = Rz - gf(z'—()) if 4 g(zo) = finite const. # 0, and
e - i#(ze)  Uzo) =0, () 0.

Often (6.2) gives the most convenient way of finding the residue at a simple pole.

Example 4. Find the residue of (sin z)/(1 — Matz =
By (6.2) we have

sin 2 sini e l—g¢ ; " ;
= == 2 — 5 = = g1 h 1
~42 |, T T# T iy B¢ ) =dksin

R(i) =

Now you may ask how you know, without finding the Laurent series, that a function
has a simple pole. Perhaps the simplest answer is that if the limit obtained using (6.1) is
some constant (not 0 or o), then f(z) does have a simple pole and the constant is the
residue. [If the limit = 0, the function is analytic and the residue = 0; if the limit is
infinite, the pole is of higher order.] However, you can often recognize the order of a
pole in advance. [See end of Section 4 for the simple case in which (z — 2o)" is a factor
of the denominator.] Suppose /° (z) is written in the form £(2)/h(z), where g(z) and h(z)
are analytic. Then you can think of g(z) and A(2) as power series in (z — zp). If the
denominator has the factor (z — Zg) to one higher power than the numerator, then f(z)
has a simple pole at z,. For example,

z cos? z 2(1 — 232 4 -2 21 +--4)

sinz (3 — 231+ )2 2214

2 COt2 2=
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has a simple pole at z = (. By the same method we can see whether a function has a

pole of any order.

C. Multiple Poles When f(z) has a pole of order n, we can use the following
method of finding residues.

Multiply f(2) by (z — z,)™, where m is an integer greater than or equal to the order
n of the pole, differentiate the result m — 1 times, divide by (m — 1)!, and evaluate

the resulting expression at z = 2g .

It is easy to prove that this rule is correct (Problem 12) by using the Laurent scries
(4.1) for f(z) and showing that the result of the outlined process is 4,.

Example 5. Find the residue of f(z) = (2 sin 2)/(z — ) at z = 7.

We take m = 3 to eliminate the denominator before differentiating; this is an allowed
choice for m because the order of the pole of f(z) at 7 is not greater than 3 since
z sin z is finite at 7. (The pole is actually of order 2, but we do not need this fact.)
Then following the rule stated, we get

2
. 1 .
=———(zsinz =3[—zsinz+ 2cos 2],-,= — L
21 dzz( ) o~ 2 ks ]

R(n)

(To compute the derivative quickly, use Leibniz’ rule for differentiating a product; see
Chapter 12, Section 3.)

PROBLEMS, SECTION 6

Find the Laurent series for the following functions about the indicated points; hence find the
residue of the function at the point. (Be sure you have the Laurent series which converges near

the point.)
1 1 sin z
1. —,z=0 2 s B= 1 3: ,z2=0
z(z + 1) i z(z — 1) 2t
h & .
4. Cozzz,z:(] 5. 2:2_1,z=1 6. sin—,z=0
sin Tz 1 1+ cos z _ 9 1 _5
v TRk —mr' """ T @ _sz+6"

10. Show that rule B is correct by applying it to (4.1).

11. Derive (6.2) by using the limit definition of the derivative /(%) instead of using L.’Hédpital’s
rule. Remember that A(z,) = 0 because we are assuming that f(z) has a simple pole at z,.

12. Prove rule C for finding the residue at a multiple pole, by applying it to (4.1). Note that the
rule is valid for » = 1 (simple pole) although we seldom use it for that case.
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13. Prove rule C by using (3.9). Hinss: If f(2) has a pole of order n at z =a, then
f(2) = gl2)/(z — a)" with g(z) analytic at z = 4. By (3.9),

g(z) .
L m dz = 2nig(a)

v§f1th & a contour inclosing & but no other singularities. Differentiate this equation (r — 1)
times with respect to 4. (Or, use Problem 3.21.)

Find the residues of the following functions at the indicated points. Try to select the easiest
method.

1 1

M —— at 2 = —2 and at =2 15, — 1 4
(32 + 2)(2 — 2) 3 2 C =296z — %) atz =7 and at z = %
z—2

; == b

16. &l — & ‘at'gz‘l—Oandatz=1 . 17. R atz:%andatz=—%
z+ 2 - i

18. 3 at z = 3i i 19 sin” z ‘E
2+ 9 O 5% — atz_2
& 2

20. = & ;

0 1 _ 2* at z = 21. T 16 a[z:ﬁ(].k;)
e?? iz 2%

22, - atz=ix 23, —0 -—
l+e %2 14 atz_3
1 —cos 2z 2z
S T -1

@ 5 atz=0 25. ezz at z=0
E,2:'[1'2

26. — o2mi/3 Cos z
1—23 at z e 27. m atz:;n:/()

242 2z

8, ———— arz=3i @ <
(22 + 9z + 1) r— atz=1In2
cosh z — | ey e |

30. — atz=10 31. - at z = ()

- eiz

R o atz=2 Ltocosz
(z2+4)2 z ) 33. =2 atz=nm
z2—2
T = =41 & .

2(1 — 22)? atz=0and at z = @ _(z2+])2 atz =1

14" to 35", Use the residue theorem to evaluate the contour integrals of each of the functions in
Problems 14 to 35 around a circle of radius 3 and center at the origin. Check carefully to
see which singular points are inside the circle. You may use your results in the previous
problems as far as they go, but you may have to compute some more residues.

36. For complex z, J,(z) can be defined by the series (12.9) in Chapter 12. Use this definition
to ﬁgd the Laurent series about z = 0 for 2 2Jy(z). Find the residue of the function at
g,
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7. EVALUATION OF DEFINITE INTEGRALS BY
USE OF THE RESIDUE THEOREM

We are going to use (5.2) and the techniques of Section 6 to evaluate several different
types of definite integrals. The methods are best shown by examples.

) 2rn dﬂ
Example 1. Find I = 14w )
If we make the change of variable z = ¢ then as 0
goes from 0 to 2m, z traverses the unit circle |z]| =1 o
(Figure 7.1) in the counterclockwise direction, and we z=e

have a contour integral. We shall evaluate this integral
. i0
by the residue theorem. If z = ¢, we have

|
dz = ie"? df = iz dO or df = = dz,

C,
1
” S S N
g L e ® : FIGURE 7.1
cos 0 = 5 =g
Making these substitutions in [, we get
! d
i 1 dz
=0 s e+ i Lser 212
1 dz
i e Qe+ Dz+2)
where C is the unit circle. The integrand has poles at 2 = —3 and z = 1—.2; only
z = —1 is inside the contour C. The residue of 1/[(2z + 1)(z + 2)] at z = —7F is-
. . H 1 B 1 1
K= M) @i e+ Mo+ Dl

Then by the residue theorem

2z
=

(BT

1
== miR(—%) =2n -
1

This method can be used to evaluate the integral of any rational function of sin 0
and cos 8 between () and 27, provided the denominator is never zero for any value of 6.
You can also find an integral from 0 to m if the integrand is even, since the integral
from 0 to 2z of an even periodic function is twice the integral from 0 tom of the same
function. (See Chapter 7, Section 9 for discussion of even and odd functions.)

® dx
Example 2. Evaluate [ = >

g 1 &
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Here we could easily find the indefinite integral and so evaluate 7 by elementary
methods. However, we shall do this simple problem by contour integration to illustrate
a method which is useful for more complicated problems,

This time we are not going to make a change of variable in /. We are going to start
with a different integral and show how to find 7 from it. We consider

dz ¥y
C1+z2,

On semicircle
where C is the closed boundary of the semi- 2= pell
circle shown in Figure 7.2. For any p > 1, the
semicircle incloses the singular point z =i and
no others; the residue of the integrand at z = i

15

R() = lim(z — i) : 1 B
)=lm(z —§) ——— = —
zsiene (B—D(=z+1) 2 FIGURE 7.2

Then the value of the contour integral is 27i(1/2) = 7. Let us write the integral in two
parts: (1) an integral along the x axis from —p to p; for this part z = x; (2) an integral
along the semicircle, where z = pe®. Then we have

(7.1) dz_ [ dx " ™ pie” 48
. i L 42T T p2ee

We know that the value of the contour integral is © no matter how large p becomes
since there are no other singular points besides z =i in the upper half-plane. Let
p— c0; then the second integral on the right in (7.1) tends to zero since the numerator
contains p and the denominator p2. Thus the first term on the right tends to 7 (the
value of the contour integral) as p— o, and we have

© iy
I'= S =T
e

This method can be used to evaluate any integral of the form
* P(x)
— o Q(x)

if P(x) and Q(x) are polynomials with the degree of Q at least two greater than the
degree of P, and if Q(z) has no real zeros (that is, zeros on the x axis). If the integrand
P(x)/Q(x) is an even function, then we can also find the integral from 0 to co.

dx

2 d
Example 3. Evaluate 7 = EEE zx‘
o 1l +uw

e dz
1+ 2%’

We consider the contour integral
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where C is the same semicircular contour as in Example 2. The singular point inclosed
is again z = 7, and the residue there is

oz e~ 1

—iz+1) 2

lim (z — 1)

z=i

1

2ie’

The value of the contour integral is 2mi(1/2ie) = m/e. As in Example 2 we write the
contour integral as a sum of two integrals:

¢ dz P dx N e dz
@) 122 ) 1+a7 1+ 2%

along upper half
of z=peif

As before, we want to show that the second integral on the right of (7.2) tends to zero
as p— 0. This integral is the same as the corresponding integral in (7.1) except for the
¢ factor. Now '

|e%| = |e= Y| = ™| |e Y| =e?<1
since ¥ = 0 on the contour we are considering. Since |e¢®| < 1, this factor does not

change the proof given in Example 2 that the integral along the semicircle tends to zero
as the radius p— co. We have then

0 eix T
s dx =—,
2 e

or taking the real part of both sides of this equation,

J’w cosydy m
e 122 e

Since the integrand (cos. x)/(1 4+ x?) is an even function, the integral from 0 to co is
half the integral from — oo to co. Hence we have

I “cosxdy W
T 144 2
Observe that the same proof would work if we replaced ¢ by ™ (m > 0) in the
above integrals. At the point where we said e ¥ < 1 (since y > 0) we would then want
e”™ <1 for y = 0, which is true if m > 0. [For m < 0, we could use a semicircle in
the lower half-plane (y < 0); then we would have ™ < 1 for y < 0. This is an unne-
cessary complication, however, in evaluating integrals containing sin mx or cos mx since
we can then choose m to be positive.] Although we have assumed here that (as in

Example 2) Q(x) is of degree at least 2 higher than P(x), a more detailed proof (see
books on complex variable) shows that degree at least one higher is enough to make the

integral
M imz
j_Q(Z) '™ dz
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around the semicircle tend to zero as p— co. Thus

= B . P )
ﬂ e"™* dx = 2mi - sum of the residues of (2) e'Mm:

— w0 -Q(x ) .Q(z)

in the upper half-plane if all the following requirements are met:

P(x) and Q(x) are polynomials, and

O(x) has no real zeros, and

the degree of Q(x) is at least 1 greater than the degree of P(x), and
m > 0.

By taking real and imaginary parts, we then find the integrals

* Plx) 4 ? Plr) p
cos mx dx, sin mx dx.
@ -Q,(x) — Q(x)
Example 4. Evaluate J 20 dx,
o

Here we remove the restriction of Examples 2 and 3 that Q(x) has no real zeros. As
in Example 3, we consider
|?iz
— dz.
z

To avoid the singular point at z = (), we integrate around the contour shown in F igure
7.3. We then let the radius r shrink to zero so that in effect we are integrating straight
through the simple pole at the origin. We are going to show (later in this section and
Problem 21) that the net result of integrating in the counterclockwise direction around a
closed contour which passes straight* through one or more simple poles is 277 - (sum of
the residues at interior points plus one-half the sum of the residues at the simple poles
on the boundary). (Warning : this rule does not hold in general for a multiple pole on a
boundary.) You might expect this result. If a pole is inside a contour, it contributes
2mi - residue, to the integral; if it is outside, it contributes nothing; if it is on the
straight line boundary, its contribution is just halfway between zero and 27 - residue.
Using this fact, and observing that, as in Example 3, the integral along the large
semicircle tends to zero as R tends to infinity, we have

X

f e—dx=2ni-%(residue ofe—atz=0):2m'-%- 1 =iz
2

Taking the imaginary parts of both sides, we get

w -
sin x
j dx = m.

X

— oo

* By “straight” we mean that the contour curve has a tangent at the pole, that is, it does not turn a corner
there.
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To show more carefully that our result is correct, let
us return to the contour of Figure 7.3. Since e%/z is
analytic inside this contour, the integral around the
whole contour is zero. As we have said, the integral
along C tends to zero as R— o0 by the theorem at the
end of Example 3. Along the small semicircle C’, we have

: ; d.
& = re', dz = re'® db, o a0,
2

iz d )
[ =5 [
C.f z Ct

As r— 0, 2 0, ¢"— 1, and the integral (along C’ in the direction indicated in Figure

7.3) tends to
0 1
J idd = —im.

Then we have as R— oo, and r— 0,

-R -] | r R
FIGURE 7.3

or

as before.

Principal Value Taking real and imaginary parts of this equation (and using Euler’s
formula ¢* = cos x + 7 sin x), we get

J‘“’ cosxdx=0’ J‘” Sinxdx-——n.

¥ oy

-

Since (sin x)/x is an even function, we have

0 o 1 [ s
mnxdx:_J Slnxdx=E.
0 X 2 [ 2

However,

is a divergent integral since the integrand (cos #)/x is approximately l/x near x = 0.
The value zero which we found for I = I“_"w (cos x)/x dx is called the principal value
(or Cauchy principal value) of /. To see what this means, consider a simpler integral,

namely
> dx
J; =3
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The integrand becomes infinite at ¥ = 3, and both [§ dx/(x — 3) and [3 dx/(x — 3) arc
divergent. Suppose we cut out a small symmetric interval about x = 3, and integrate
from 0 to 3 — 7 and from 3 + » to 5. We find

3—r d 3—r
j z I—lnix—Si =Inr—1In 3
0

x~3=L 0

3 dx
=In2—1Inr
3+rx73

The sum of these two integrals is

In2—In3=In%;

this sum is independent of r. Thus, if we let — 0, we get the result In 2 which is
called the principal value of

5 dx - ° 4
G often written PV = In %)
o X — 3 o ¥ — 3

The terms In 7 and —In » have been allowed to cancel each other; graphically an
infinite area above the x axis and a corresponding infinite area below the x axis have
been canceled. In computing the contour integral we integrated along the x axis from
—o up to —r, and from +7 to + 0, and then let »— 0; this is just the process we
have described for finding principal values, so the result we found for the improper
integral IT w (cos x)/x dx, namely zero, was the principal value of this integral.

Example 5. Evaluate

oorp—l
dr, D<p<l,
L 1+rr ?

and use the result to prove (5.4) of Chapter 11.
We first find

p—1
(7.3) §f+ - dz, 0 <p <1, around C in Figure 7.4.
Before we can evaluate this integral, we must ask what z”~' means, since for each z
there may be more than one value of 2P~ !. (See discussion of branches at the end of
Section 1.) For example, consider the case p =3; then 2 ! =z~ "2 Recall from
Chapter 2, Section 10, that there are two square roots of any complex number. At a
point where 8 = /4, say, we have

2 = rem,’4, z*l,’l - r—l/ZE—m,fB‘

But if 0 increases by 27 (we think of following a circle around the origin and back to
our starting point), we have

z = rei{rt,’4+21t), 2*11'2 e r—l,f2e—l'(1tl8+rr} = ?*I/2g—i1c,'8.

Similarly, for any starting point (with » # 0), we find that 272 or 227! comes back to
a different value (different branch) when 6 increases by 27 and we return to our
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starting point. If we want to use the formula 27! to ¥
define a (single-valued) function, we must decide on c

some interval of length 27 for @ (that is, we must select
one branch of 2”7 1). Let us agree to restrict § to the
values of 0 to 27 in evaluating the contour integral
(7.3). We may imagine an artificial barrier or cut
(which we agrec not to cross) along the positive x axis;
this is called a branch cut. A point which we cannot
encircle (on an arbitrarily small circle) without crossing
a branch cut (thus changing to another branch) is
called a branch point; the origin is a branch point here. FIGURE 7.4
In Figure 7.4, then, 0 =0 along AB (upper side of

the positive x axis); when we follow C around to DE, 0 increases by 2m, so 8 = 2% on
the lower side of the positive x axis. Note that the contour in Figure 7.4 never takes us
.outsidc the 0 to 27 interval, so the factor 2~ ! in (7.3) is a single-valued function. The
integrand in (7.3), namely 22~ '/(1 + z), is now an analytic function inside the closed

T
=
SIeY

curve C in Figure 7.4 except for the pole at 2 = —1 = ¢ The residue there is
(™71 = —¢™” Then we have
) =
; dz = —2mie'™
£I+z mie'™P, 0O<p=<l.

Along cither of the two circles in Figure 7.4 we have z = r¢® and the integral is

P 1,ip—1)8 , 7 0 . rpgf.t}
1 + ret? rie” av =1 1+re"0d9

This integral tends to zero if #— 0 or if r— o0, (Verify this; note that the denominator
1s approximately 1 for small #, and approximately r¢® for large 7.) Thus the integrals
along the circular parts of the contour tend to zero as the little circle shrinks to a point
and. Fhe large circle expands indefinitely. We are left with the two integrals along the
positive x axis with 4B now extending from 0 to co and DE from co to 0. Along AR
we agreed to have 0 =0, s0 z = r¢' 0 = #, and this integral is

=] rp-l
dr.
r=0 L Aope

Along DE, we have 0 = 27, so z = r¢*™ and this integral is

0 (r82m')p—1 » o rp_lezm-p
[ieeB e M==| =———dr,
b= 1 1€ 0 1+ 7

Adding the AB and DE integrals, we get

o ® pp=1
1 — e“™P
( )J; 1+~

dr = —2qiet™®
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by (7.4). Then the desired integral is
J’“’ A —2miet™? w2 b
0

dr

147 | A T )

(7.5)

Let us use (7.5) to obtain (5.4) of Chapter 11. Putting 4 = 1 — p in (6.5) and (7.1) of
Chapter 11, we have

w ,p—1

B(p,l—p)=j g dy and

(7.6) o I+y

B(p, 1 —p)=T(p)I(1 —p) since I'(1) = L.
Combining (7.5) and (7.6) gives (5.4) of Chapter 11, namely

=53 p—1 T

F(p)T(l—p)=B(P,1—P):£ 1+ydy_sinnp-

Argument Principle Since w = f(z) is a complex number for cach z, we can write
w = Re'® (just as we write 2 = r¢'®) where R = |w| and @ is the angle of »w [or we
could call it the angle of f(z)]. As'z changes, » = f(z) also changes and so R and ®
vary as we go from point to point in the complex (», ¥) plane. We want to show that

(a) if f(z) is analytic on and inside a simple closed curve C and f(z) # 0 on C, then
the number of zeros of f(z) inside C is equal to (1/27) - (change in the angle of f(2) as
we traverse the curve C);

(b) if f(z) has a finite number of poles inside C, but otherwise meets the require-
ments stated,® then the change in the angle of f(z) around C is equal to (2m) - (the
number of zeros minus the number of poles).

(Just as we say that a quadratic equation with equal roots has fwo equal roots, so
here we mean that a zero of order # counts as # zeros and a pole of order # counts as #
poles.)

To show this we consider

£1(2)
— dz.
)

By the residue theorem, the integral is equal to 27 - (sum of the residues at singu-
larities inside C). It is straightforward to show (Problem 42) that the residue of
F(z) = f"(z)/f(2) at a zero of f(z) of order n is n, and the residue of F(z) at a pole of
S (2) of order p is —p. Then if N is the number of zeros and P the number of poles of
[f(z) inside C, the integral is 2mi(N — P). Now by direct integration, we have

()
(77) ——dz =In f(z)
c f(2)
where R = | f(z)| and @ is the angle of f(2). Recall from Chapter 2, Section 13, that
Ln R means the ordinary real logarithm (to the base e) of the positive number R, and

=LnR
c

+ 10

&

= In R
c

bl

C

* A function which is analytic except for poles is called meromorphic.
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is single-valued; In f(z) is multiple-valued because @ is multiple-valued. Then if we
integrate from a point A4 on C all the way around the curve and back to A4, L.n R has
the same value at A both at the beginning and at the end, so the term Ln R|c is Ln R
at A minus Ln R at A; this is zero. The same result may not be true for @; that is,
the angle may have changed as we go from point A all the way around C and back to
A. (Think, for example, of the angle of z as we go from z = 1 around the unit circle
and back to z = 1; the angle of z has increased from 0 to 2m.) Collecting our results,
we have

e etk e ® ) &_k' o
-'(7'8)7,1 J__N*.P_ f(ZJd ’89

(change m the angle of o (z) around C),
where N is the number of 7€ros and /2] the number of pales of f (.z) inside C w1th

"poles of order n ccunted as n poles and szmllarly for zeros of order n. Equatmn (7. 8)
is known as the argument prmﬂpie (recali from Ch&pter 2 that argument means amgle)

This principle is often used to find out how many zeros (or poles) a given function
has in a given region. (Locating the zeros of a function has important applications to
determining the stability of linear systems such as electric circuits and servo-
mechanisms. See, for example, Kuo, page 361, or Kaplan, Operational Methods, Chap-
ter 7.)

Example 6. Let us show that f(2) = 2> + 42 + 1| = 0 at exactly one point in the first
quadrant. The closed curve C in (7.8) is, for this problem, the contour OPQ in Figure
7.5, where PQ is a large quarter circle. We first observe that #* + 4x + 1> 0 for x > 0
and (iy)® + 4iy + 1 # 0 for any y (since its real part, namely 1,
#0); then f(z) £ 0 on OP or 0Q. Also f(z) # 0 on PQ if we
choose a circle large enough to inclose all zeros. We now want to
find the change in the angle ® of f(z) = Re'® as we go around C.
Along OP, z = x; then f(2) =f(x) is real and so ® = 0. Along
PQ, z = re® with r constant and very large. For very large #, the
2® term in f(z) far outweighs the other terms, and we have
flz) = 2® =% As 0 goes from 0 to 7/2 along PQ, ® =30 FIGURE 7.5
goes from 0 to 37/2. On QO0, z = iy, f(2) = —iy® 4+ 4iy + 1; then

imaginary part of f(z) 4y — e
real part of f(z) 1

tan @ =

For very large y (that is, at @), we had @ = 3n/2 (for y = co, we would have
tan # = — oo, and ® would be exactly 37/2). Now as y decreases along Q0O, the value
of tan ® = 4y — »* decreases in magnitude but remains negative until it becomes 0 at
y = 2. This means that ® changes from 3n/2 to 2n. Between y =2 and y = 0, the
tangent becomes positive, but then decreases to zero again without becoming infinite.
This means that the angle ® increases beyond 27 but not as far as 2z + 7/2, and then
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decreases again to 27. Thus the total change in ® around C is 2z, and by (7.8), the
number of zeros of £(z) in the first quadrant is (1/27) - 2m = 1. If we realize that (for a
polynomial with real coefficients) the zeros off the real axis always occur in conjugate
pairs, we see that there must also be one zero for z in the fourth quadrant, and the
third zero must be on the negative x axis.

PROBLEMS, SECTION 7

Using one of the methods discussed in Examples 1, 2, and 3, evaluate the following definite
integrals.

@ "2 de " f2n da
Jo 13+5sin6 " Jo 5—3cos?
B 40 (2" sin? 0 40
3. e —— : e
Jo 5—4sind Jo 5+ 3cost
& db ' , (= do
5. | —————  (0<r<]) 6 | ——m—
Jo 1 —2rcos 8 +r Jo (24 cos 0)
. (2% cos 20 40 " (*  sin? 8 46
Joo S5+4cosd " Jo 3—12cos 8
f2n 40 [ dx
9. - —_— = (2 —_—
Jo 1 +sinfcosa =Tt Jowat+4x+5
oo 4 f* oo 2 d
11. — : 3 12. f—x
Jo x4+ 1) Jo ¥+ 16
13 ['@ 22 dx 14 [®  sin x dx
e P HBDET+Y) B ]
(s ( cos 2x dx i ® xsin ¥ dx
e Wt +4 T W44
i f®  xsin x dr - ® cos Ty dx
B I oo T+t
(< cos 2x dx @ cos x dx
19. ———— 20. 0.2
Jo (4x*+9) o (I'+9¢7)

21. In Example 4 we stated a rule for evaluating a contour integral when the contour passes
through simple poles. We proved that the result was correct for
3
eiz T
— dz
r 2

around the contour I shown here.

(a) By following the same method (integrating around C' of Figure 7.3 and letting r— 0)
show that the result is correct if we replace e by any f(z) which is analytic at z = 0.
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(b) Repeat the proof in (a) for
[
( a real

z— a)
(that is, a pole on the x axis), with f(z) analytic at z = a.

Using the rule of Example 4 (also see Problem 21), evaluate the following integrals. Find
principal values if necessary.

i "o g o dx
22. e SR 23. -
Jow 0= D2+ 1) Jow PP+ 92 —2)
oo : ffon .
2. x sin mx . 2. xzsln x2 P
dlg T—o% Jo W —m
(too (fo TT.
26. O 2. P i
Yo = DF= 1 Jo 1—4x
o 5 Moo .+
@ dx . 29, sin ax %
Jo 1—a Jo x
© dx
(a) By the method of Example 2 evaluate —
0 1 + x

(b) Evaluate the same integral by using tables to get the indefinite integral; unless you are

very careful you may get zero. Explain why.
(c) Make the change of variables # = x* in the integral in (a) and evaluate the u integral

using (7.5).
“ dx
31. Use the method of Problem 30(c) to evaluate m.
0

32. Use the method of Problem 30(c) and the contour and method of Example 5, to evaluate

B dx
o (14 2%

Evaluate the following integrals by the method of Example 5

fdx f ﬂdx

s 1+ «? (1 +x)2
_ 2WPax J‘ In «
dx
O J (l + 2)(2 + x) . SM(] + x)
@ @ Show that "
J*m oPx

——dr = —
o l+e sin 7p

33.

for 0 < p < 1. Hint: Find j eP* dz/(1 + ¢°) around the rectangular contour shown.

-A 0 A
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39.

40.

41.

42.

43.

Show that the integrals along the vertical sides tend to zero as .4 oo. Note that the
integral along the upper side is a multiple of the integral along the x axis.

(b) Make the change .of variable y = ¢* in the x integral of part (a), and using (6.5) of
Chapter 11, show that this integral is the beta function, B(p, 1 — p). Then using (7.1) of
Chapter 11, show that T(p)I'(1 — p) = m/sin 7p.

Using the same contour and method as in Problem 37a evaluate
o0 P
dx, 0<p<l.

Hint: The only difference between this problem and Problem 37a is that you now have two
simple poles on the contour instead of a pole inside. Use the rule of Example 4.

@ erxp'S
dx.
_ o cosh mx
Hint : Use a rectangle as in Problem 37a but of height 1 instead of 2. Note that there is a
pole at #/2.

Evaluate

Evaluate

® xdx
o sinh %’

Hint : Tirst find the —co to oo integral. Use a rectangle of height = and note the simple
pole at i on the contour,

The Fresnel integrals, % sin #* du and [% cos «* du, are y
important in optics. For the case of infinite upper limits, Quarter circle
evaluate these integrals as follows: Make the change of vari- of radius R

able »=u?; to evaluate the resulting integrals, find

$ 27 '%" dz around the contour shown. Let r— 0 and

R— oo and show that the integrals along these quarter- 5

: P . . ‘ Quarter circle

circles tend to zero. Recognize the integral along the y axis af Fadius r

as a I' function and so evaluate it. Hence evaluate the

integral along the x axis; the real and imaginary parts of this integral are the integrals
you are trying to find.

If F(z) = f"(2)/ [ (2),
(a) show that the residue of F(z) at an nth order zero of f(z), is n. Hint: If f(2) has a zero
of order n at z = a, then

X

f@) =az—af' + aysi(z—a)"" ' +

(b) Also show that the residue of F(z) at a pole of order p of f(z), is —p. Hint: See the
definition of a pole of order p at the end of Section 4.

By using theorem (7.8), show that 2* + 2* + 9 = 0 has exactly one root in the first qua-
drant. Recall that the roots of a polynomial equation with real coefficients are either real or
occur in conjugate pairs @ + #i (think of the quadratic formula, for example). Hence show
that since 2> + z* + 9 = 0 has one root in the first quadrant, it has one in the fourth and
one on the negative real axis.
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44. ‘The fundamental theorem of algebra says that every equation of the form f(z2) =
a2 +a, 2"+ -+ ag=0,a,+0,n>1, has at least one root, from which it follows
that an #th degree equation has » roots. Prove this by using the argument principle. Hint :
Follow the increase in the angle of f(z) around a very large circle z = re'®; for sufficiently
large r, all roots are inclosed, and f(z) is approximately a, 2".

As in Problem 43 find out in which quadrants the roots of the following equations lie:

45, 2422 +z2+4=0 46. 22+ 322 +4z+2=0
47. 22 +422+12=0 48. 2 — 22 +622—324+5=0
49, 2* — 423 4 1122 — 142+ 10=10 50. z*+ 22 +422+2:4+3=0

51. Use (7.8) to evaluate
f(=) _ 2z +1)?sinz
P T dz, where f(z) = —(zz T e—3)

around the circle |z| = 2; around |z| = %

3

- z” dz
52. Use (7.8) to evaluate %T

o around |z| = 1.
2

23+ 4z

——— - 4z around the circle |z — 2| =2
2zt + 8z + 16

53. Use (7.8) to evaluatcﬂg
54. Use (7.8) to evaluate
sec” (z/4) dz
o1 —tan (z/4)’

where C is the rectangle formed by the lines y = +1, xr = +3n.

8. THE POINT AT INFINITY; RESIDUES AT INFINITY

It is often useful to think of the complex plane as corresponding to the surface of a
sphere in the following way. In Figure 8.1, the sphere is tangent to the plane at the
origin O. Let O be the south pole of the sphere, and N be the north pole of the sphere,
If a line through N intersects the sphere at P and the plane at (0, we say that the point
P on the sphere and the point Q on the plane are corresponding points. Then we have
a one-to-one correspondence between points on the sphere (except V) and points of the
plane (at finite distances from ). Imagine point Q moving farther and farther out away
from O; then P moves nearer and nearer to N

N. If z = x + iy is the complex coordinate N
of O, then as O moves out farther and far-
ther from O, we would say z— oco. It is
customary to say that the point N corre-
sponds to the point ar infinity in the com-
plex plane. Observe that straight lines
through the origin in the plane correspond
to meridians of the sphere. The meridians e
all pass through both the north pole and FIGURE 8.1
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the south pole. Corresponding to this, straight lines through the origin in the complex
plane pass through the point at infinity. Circles in the complex plane with center at O
correspond to parallels of latitude on the sphere. This mapping of the complex plane
onto a sphere (or the mapping of the sphere onto a tangent plane) is called a stereo-
graphic projection.

To investigate the behavior of a function at infinity, we replace z by 1/z and consider
how the new function behaves at the origin. We then say that infinity is a regular point,
a pole, etc., of the original function, depending on what the new function does at the
origin. For example, consider z” at infinity; 1/z> has a pole of order 2 at the origin, so
2” has a pole of order 2 at infinity. Or consider ¢!/?; since e* is analytic at z = 0, ¢!/* is
analytic at o0, ]

Next we want to see how to find the residue of a function at co. To do this, we are
going to want to replace z by 1/z and work around the origin. In order to keep our
notation straight, let us use two variables, namely Z which takes on values near oo, and
z = 1/Z which takes on values near 0. The residue of a function at oo is defined so that
the residue theorem holds, that is,

(8.1) éﬂ@de%b&ﬁ@Mﬁﬂ@mZ=m)
C

if C is a closed path around the point at o0 but inclosing no other singular points. Now
what does it mean to integrate “around oo ”? Recall that we have agreed to traverse
contours so that the area inclosed always lies to our left. The area we wish to “inclose ”
is the area “around oo ”; if C is a circle, this area would lie outside the circle in our
usual terminology. Figure 8.1 may clarify this. Imagine a small circle about the north
pole; the area inside this circle (that is, the area including N) corresponds to points in
the plane which are outside a large circle C. We must go around C in the clockwise
direction in order to have the area “around co” to our left. This is indicated by the
arrow on the integral sign in (8.1). Note that if Z = Re”®, then in going clockwise
around C, we are going in the direction of decreasing ®. Let us make the following
change of variable in the integral (8.1):

1 1
Z=~, dZ=——dz
2 2

If Z= Re™® traverses a circle C of radius R in the direction of decreasing @, then
z2=1/Z=(1/R)e ' = r¢" traverses a circle C' of radius » = 1/R in the counter-
clockwise direction (that is, # = —@® increases as ® decreases). Thus (8.1) becomes

(8.2) fﬁ — :—2 f(i) dz = 2mi - (residue of f(Z) at Z = o),
ci .

The integral in (8.2) is an integral about the origin and so can be evaluated by
calculating the residue of (—1/2%)f(1/z) at the origin. (There are no other singular
points of f(1/z) inside C’ because we assumed that there were no singular points of
f(Z) outside C except perhaps o0.) Thus we have

(8.3) (residue of f(Z) at 7 = w0) = — (rcsidue ofzi2 f(l) at z = 0)
b4

and we can use the methods we already know for computing residues at the origin.



