MATH 320 - LINEAR ALGEBRA
 Instructor: Ali Mostafazadeh SPRING 2005, Quiz \#1-Solutions by Turker Ozsari

You may not get credit unless you show all your work and write neatly! You have 30 minutes.
(1) V is a vector space over $\mathbb{F}(\mathbb{R}$ or $\mathbb{C})$. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other. (10 Points)

Proof.

(\Rightarrow) Let U and W be two subspaces of V such that $U \bigcup W$ is a subspace of V. Assume $U / W \neq \emptyset$ and $W / U \neq \emptyset$. Let $u \in U / W$ and $w \in W / U$ be two elements. Then, $u+w \in U \bigcup W$, which implies either $u+w \in U$ or $u+w \in W$. In the first case, there is an $x \in U$ such that $x=u+w$. Then $w=x-u \in U$, contradiction. In the latter case, the same procedure gives $u \in W$, contradiction. Hence, we cannot have both $U / W \neq \emptyset$ and $W / U \neq \emptyset$. Thus either $U / W=\emptyset$ or $W / U=\emptyset$, that is, either $U \subseteq W$ or $W \subseteq U$.
(\Leftarrow) Let U, W be subspaces of V such that $U \subseteq W$. Then, $U \bigcup W=U$ which is a subspace of V by assumption.
(2) Prove that the vector space V of complex polynomials over \mathbb{C} (complex numbers) is infinite-dimensional. (10 Points)

Proof.

Assume V is finite dimensional. Then, there is a spanning list of polynomials $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ in V. Let $d\left(p_{i}\right)=\operatorname{degree}\left(p_{i}\right)$ and

$$
m=\max _{1 \leq i \leq n} d\left(p_{i}\right)
$$

Then, any linear combination of $p_{i}^{\prime} s$ has degree less than or equal to m. Thus, one cannot get a polynomial with degree greater than m as a linear combination of p_{1}, \ldots, p_{n}, which contradicts the fact that $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ spans V. Hence, our assumption is false, that is, V is infinite-dimensional.

