MATH 320 - LINEAR ALGEBRA Instructor: Ali Mostafazadeh SPRING 2005, Quiz #3

You may not get credit unless you show all your work and write neatly! You have 55 minutes.

(1) Prove or disprove: if $U \leq V$ and invariant under every (linear) operator on V, then $U = \{0\}$ or U = V. (10 Points) **Proof:** If not, $0 < m := \dim(U) < n := \dim V$. Let $(v_1, ..., v_m)$ be a basis of U and extend it to a basis of V, $(v_1, ..., v_n)$. Define, $Tv_1 := v_n, Tv_n := v_1, Tv_i := v_i, 1 < i < n$. Then, we must have $Tv_1 = v_n \in U$, contradiction. (2) $p \in P(\mathbb{C})$, deg(p) = m. Prove that p has m distinct roots iff p and its derivative p' have no roots in common. (10 points) **Proof:** (\Rightarrow) Let $p(z) = c \prod_{i=1}^{m} (z - \lambda_i), \lambda_i \neq \lambda_j$ for $i \neq j$. Then, $p'(z) = c \sum_{j=1}^{m} \prod_{i \neq j, i=1}^{m} (z - \lambda_i)$. Then, $p'(\lambda_k) = c \prod_{i \neq k, i=1}^{m} (\lambda_k - \lambda_i) \neq 0$, since $\lambda_i \neq \lambda_k$ for $i \neq k$. (\Leftarrow) Suppose $\exists \lambda \ni p(z) = c(z - \lambda)^2 q(z), q \in P(\mathbb{C})$. Then, $p'(z) = 2c(z - \lambda)q(z) + c(z - \lambda)^2 q'(z)$. Hence, $p'(\lambda) = 0$, i.e., p and p' have a common root.