MATH 320 - LINEAR ALGEBRA
 Instructor: Ali Mostafazadeh SPRING 2005, Quiz \#5, Solutions by Turker Ozsari

You may not get credit unless you show all your work and write neatly! You have 30 minutes.
(1) X is a complex inner product space. Let T be a normal operator on X. Show that there is a linear operator S on X such that $S^{2}=T$. (10 Points)
(Hint: By Spectral Theorem, you can write $T=\sum_{i=1}^{m} \lambda_{i} P_{i}$, where P_{i} are mutually orthogonal projections, λ_{i} are distinct eigenvalues of T, then define an S).
Proof. Define $\xi_{i}:=\left(\lambda_{i}\right)^{1 / 2}$ and $S:=\sum_{i=1}^{m} \xi_{i} P_{i}$. Then,
$S^{2}=\left(\sum_{i=1}^{m} \xi_{i} P_{i}\right)\left(\sum_{j=1}^{m} \xi_{j} P_{j}\right)=\sum_{i, j=1}^{m} \xi_{i} \xi_{j} P_{i} P_{j}$, since P_{i} 's are mutually orthogonal projections we have $P_{i} P_{j}=0$ for $i \neq j$ and $P_{i}^{2}=P_{i}$ for each i.
Hence, $S=\sum_{i=1}^{m}\left(\xi_{i}\right)^{2} P_{i}^{2}=\sum_{i=1}^{m} \lambda_{i} P_{i}=T$.
(2) Show that the linear operator T defined by $T\left(z_{1}, z_{2}\right):=\left(z_{2}, 0\right)$ on \mathbb{F}^{2} does not have a square root. (10 Points)
(Hint: Consider the matrix form of T and assume it has a square root to arrive a contradiction.)
Proof. Using the standard basis $\{(1,0),(0,1)\}$, we have the matrix of T as $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Assume T has a square root S which has the matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Then, we must have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, since $S^{2}=T$. Then, $a^{2}+b c=0, b(a+d)=1, c(a+d)=0, b c+d^{2}=0$. From these equations, we can easliy get the contradiction that $a+d \neq 0$ and $a+d=0$. By contradiction, T has not a square root.

